1 |
fronga |
1.1 |
static const char* desc =
|
2 |
|
|
"=====================================================================\n"
|
3 |
|
|
"| \n"
|
4 |
|
|
"|\033[1m roostats_cl95.C version 1.02 \033[0m\n"
|
5 |
|
|
"| \n"
|
6 |
|
|
"| Standard c++ routine for 95% C.L. limit calculation \n"
|
7 |
|
|
"| for cross section in a 'counting experiment' \n"
|
8 |
|
|
"| Fully backwards-compatible with the CL95 macro \n"
|
9 |
|
|
"| \n"
|
10 |
|
|
"| also known as 'CL95 with RooStats' \n"
|
11 |
|
|
"| \n"
|
12 |
|
|
"|\033[1m Gena Kukartsev, Stefan Schmitz, Gregory Schott \033[0m\n"
|
13 |
|
|
"| \n"
|
14 |
|
|
"| July 2010: first version \n"
|
15 |
|
|
"| March 2011: restructuring, interface change, expected limits \n"
|
16 |
|
|
"| May 2011: added expected limit median, \n"
|
17 |
|
|
"| 68%, 95% quantile bands and actual coverage \n"
|
18 |
|
|
"| \n"
|
19 |
|
|
"=====================================================================\n"
|
20 |
|
|
" \n"
|
21 |
|
|
"Prerequisites: \n"
|
22 |
|
|
" ROOT version 5.27/06 or higher \n"
|
23 |
|
|
" \n"
|
24 |
|
|
" \n"
|
25 |
|
|
" \n"
|
26 |
|
|
"The code should be compiled in ROOT: \n"
|
27 |
|
|
" \n"
|
28 |
|
|
"root -l \n"
|
29 |
|
|
" \n"
|
30 |
|
|
".L roostats_cl95.C+ \n"
|
31 |
|
|
" \n"
|
32 |
|
|
"Usage: \n"
|
33 |
|
|
" limit = roostats_cl95(ilum, slum, eff, seff, bck, sbck, n, gauss = false, nuisanceModel, method, plotFileName); \n"
|
34 |
|
|
" limit_result = roostats_cla(ilum, slum, eff, seff, bck, sbck, nuisanceModel); \n"
|
35 |
|
|
" limitA = roostats_cla(ilum, slum, eff, seff, bck, sbck, nuisanceModel); \n"
|
36 |
|
|
" \n"
|
37 |
|
|
"Inputs: \n"
|
38 |
|
|
" ilum - Nominal integrated luminosity (pb^-1) \n"
|
39 |
|
|
" slum - Absolute error on the integrated luminosity \n"
|
40 |
|
|
" eff - Nominal value of the efficiency times \n"
|
41 |
|
|
" acceptance (in range 0 to 1) \n"
|
42 |
|
|
" seff - Absolute error on the efficiency times \n"
|
43 |
|
|
" acceptance \n"
|
44 |
|
|
" bck - Nominal value of the background estimate \n"
|
45 |
|
|
" sbck - Absolute error on the background \n"
|
46 |
|
|
" n - Number of observed events (not used for the \n"
|
47 |
|
|
" expected limit) \n"
|
48 |
|
|
" gauss - if true, use Gaussian statistics for signal \n"
|
49 |
|
|
" instead of Poisson; automatically false \n"
|
50 |
|
|
" for n = 0. \n"
|
51 |
|
|
" Always false for expected limit calculations \n"
|
52 |
|
|
" nuisanceModel - distribution function used in integration over\n"
|
53 |
|
|
" nuisance parameters: \n"
|
54 |
|
|
" 0 - Gaussian (default), 1 - lognormal, \n"
|
55 |
|
|
" 2 - gamma; \n"
|
56 |
|
|
" (automatically 0 when gauss == true) \n"
|
57 |
|
|
" method - method of statistical inference: \n"
|
58 |
|
|
" \"bayesian\" - Bayesian with numeric \n"
|
59 |
|
|
" integration (default), \n"
|
60 |
|
|
" \"workspace\" - only create workspace and save\n"
|
61 |
|
|
" to file, no interval calculation\n"
|
62 |
|
|
" plotFileName - file name for the control plot to be created \n"
|
63 |
|
|
" file name extension will define the format, \n"
|
64 |
|
|
" <plot_cl95.pdf> is the default value, \n"
|
65 |
|
|
" specify empty string if you do not want \n"
|
66 |
|
|
" the plot to be created (saves time) \n"
|
67 |
|
|
" \n"
|
68 |
|
|
" \n"
|
69 |
|
|
"The statistics model in this routine: the routine addresses the task \n"
|
70 |
|
|
"of a Bayesian evaluation of limits for a one-bin counting experiment \n"
|
71 |
|
|
"with systematic uncertainties on luminosity and efficiency for the \n"
|
72 |
|
|
"signal and a global uncertainty on the expected background (implying \n"
|
73 |
|
|
"no correlated error on the luminosity for signal and background, \n"
|
74 |
|
|
"which will not be suitable for all use cases!). The observable is the\n"
|
75 |
|
|
"measured number of events. Here the bayesian 90% interval (upper \n"
|
76 |
|
|
"limit corresponds to one-sided 95% upper limit) is evaluated as a \n"
|
77 |
|
|
"function of the observed number of events in a hypothetical \n"
|
78 |
|
|
"experiment. \n"
|
79 |
|
|
" \n"
|
80 |
|
|
"\033[1m Note! \033[0m\n"
|
81 |
|
|
"If you are running nonstandard ROOT environment, e.g. in CMSSW, \n"
|
82 |
|
|
"you need to make sure that the RooFit and RooStats header files \n"
|
83 |
|
|
"can be found since they might be in a nonstandard location. \n"
|
84 |
|
|
" \n"
|
85 |
|
|
"For CMSSW_4_2_0_pre8 and later, add the following line to your \n"
|
86 |
|
|
"rootlogon.C: \n"
|
87 |
|
|
" gSystem -> SetIncludePath( \"-I$ROOFITSYS/include\" ); \n";
|
88 |
|
|
|
89 |
|
|
|
90 |
|
|
#include <algorithm>
|
91 |
|
|
|
92 |
|
|
#include "TCanvas.h"
|
93 |
|
|
#include "TMath.h"
|
94 |
|
|
#include "TRandom3.h"
|
95 |
|
|
#include "TUnixSystem.h"
|
96 |
|
|
#include "TStopwatch.h"
|
97 |
|
|
|
98 |
|
|
#include "RooPlot.h"
|
99 |
|
|
#include "RooRealVar.h"
|
100 |
|
|
#include "RooProdPdf.h"
|
101 |
|
|
#include "RooWorkspace.h"
|
102 |
|
|
#include "RooDataSet.h"
|
103 |
|
|
|
104 |
|
|
#include "RooStats/ModelConfig.h"
|
105 |
|
|
#include "RooStats/SimpleInterval.h"
|
106 |
|
|
#include "RooStats/BayesianCalculator.h"
|
107 |
|
|
#include "RooRandom.h"
|
108 |
|
|
|
109 |
|
|
// FIXME: remove namespaces
|
110 |
|
|
using namespace RooFit;
|
111 |
|
|
using namespace RooStats;
|
112 |
|
|
using namespace std;
|
113 |
|
|
|
114 |
|
|
class LimitResult;
|
115 |
|
|
|
116 |
|
|
Double_t roostats_cl95(Double_t ilum, Double_t slum,
|
117 |
|
|
Double_t eff, Double_t seff,
|
118 |
|
|
Double_t bck, Double_t sbck,
|
119 |
|
|
Int_t n,
|
120 |
|
|
Bool_t gauss = kFALSE,
|
121 |
|
|
Int_t nuisanceModel = 0,
|
122 |
|
|
std::string method = "bayesian",
|
123 |
|
|
std::string plotFileName = "plot_cl95.pdf");
|
124 |
|
|
|
125 |
|
|
LimitResult roostats_clm(Double_t ilum, Double_t slum,
|
126 |
|
|
Double_t eff, Double_t seff,
|
127 |
|
|
Double_t bck, Double_t sbck,
|
128 |
|
|
Int_t nit = 200, Int_t nuisanceModel = 0,
|
129 |
|
|
std::string method = "bayesian");
|
130 |
|
|
|
131 |
|
|
// legacy support: use roostats_clm() instead
|
132 |
|
|
Double_t roostats_cla(Double_t ilum, Double_t slum,
|
133 |
|
|
Double_t eff, Double_t seff,
|
134 |
|
|
Double_t bck, Double_t sbck,
|
135 |
|
|
Int_t nuisanceModel = 0,
|
136 |
|
|
std::string method = "bayesian");
|
137 |
|
|
|
138 |
|
|
|
139 |
|
|
|
140 |
|
|
|
141 |
|
|
// ---> implementation below --------------------------------------------
|
142 |
|
|
|
143 |
|
|
|
144 |
|
|
class LimitResult{
|
145 |
|
|
|
146 |
|
|
friend class CL95Calc;
|
147 |
|
|
|
148 |
|
|
public:
|
149 |
|
|
LimitResult():
|
150 |
|
|
_expected_limit(0),
|
151 |
|
|
_low68(0),
|
152 |
|
|
_high68(0),
|
153 |
|
|
_low95(0),
|
154 |
|
|
_high95(0){};
|
155 |
|
|
|
156 |
|
|
~LimitResult(){};
|
157 |
|
|
|
158 |
|
|
Double_t GetExpectedLimit(){return _expected_limit;};
|
159 |
|
|
|
160 |
|
|
Double_t GetOneSigmaLowRange(){return _low68;};
|
161 |
|
|
Double_t GetOneSigmaHighRange(){return _high68;};
|
162 |
|
|
Double_t GetOneSigmaCoverage(){return _cover68;};
|
163 |
|
|
|
164 |
|
|
Double_t GetTwoSigmaLowRange(){return _low95;};
|
165 |
|
|
Double_t GetTwoSigmaHighRange(){return _high95;};
|
166 |
|
|
Double_t GetTwoSigmaCoverage(){return _cover95;};
|
167 |
|
|
|
168 |
|
|
private:
|
169 |
|
|
Double_t _expected_limit;
|
170 |
|
|
Double_t _low68;
|
171 |
|
|
Double_t _high68;
|
172 |
|
|
Double_t _low95;
|
173 |
|
|
Double_t _high95;
|
174 |
|
|
Double_t _cover68;
|
175 |
|
|
Double_t _cover95;
|
176 |
|
|
};
|
177 |
|
|
|
178 |
|
|
|
179 |
|
|
class CL95Calc{
|
180 |
|
|
|
181 |
|
|
public:
|
182 |
|
|
CL95Calc();
|
183 |
|
|
~CL95Calc();
|
184 |
|
|
|
185 |
|
|
RooWorkspace * makeWorkspace(Double_t ilum, Double_t slum,
|
186 |
|
|
Double_t eff, Double_t seff,
|
187 |
|
|
Double_t bck, Double_t sbck,
|
188 |
|
|
Bool_t gauss,
|
189 |
|
|
Int_t nuisanceModel);
|
190 |
|
|
RooWorkspace * getWorkspace(){ return ws;}
|
191 |
|
|
|
192 |
|
|
RooAbsData * makeData(Int_t n);
|
193 |
|
|
|
194 |
|
|
Double_t cl95(std::string method = "bayesian");
|
195 |
|
|
|
196 |
|
|
Double_t cla( Double_t ilum, Double_t slum,
|
197 |
|
|
Double_t eff, Double_t seff,
|
198 |
|
|
Double_t bck, Double_t sbck,
|
199 |
|
|
Int_t nuisanceModel,
|
200 |
|
|
std::string method );
|
201 |
|
|
|
202 |
|
|
LimitResult clm(Double_t ilum, Double_t slum,
|
203 |
|
|
Double_t eff, Double_t seff,
|
204 |
|
|
Double_t bck, Double_t sbck,
|
205 |
|
|
Int_t nit = 200, Int_t nuisanceModel = 0,
|
206 |
|
|
std::string method = "bayesian");
|
207 |
|
|
|
208 |
|
|
int makePlot( std::string method,
|
209 |
|
|
std::string plotFileName = "plot_cl95.pdf" );
|
210 |
|
|
|
211 |
|
|
private:
|
212 |
|
|
|
213 |
|
|
// methods
|
214 |
|
|
Double_t GetRandom( std::string pdf, std::string var );
|
215 |
|
|
|
216 |
|
|
// data members
|
217 |
|
|
RooWorkspace * ws;
|
218 |
|
|
RooStats::ModelConfig mc;
|
219 |
|
|
RooAbsData * data;
|
220 |
|
|
BayesianCalculator * bcalc;
|
221 |
|
|
RooStats::SimpleInterval * sInt;
|
222 |
|
|
double nsig_rel_err;
|
223 |
|
|
double nbkg_rel_err;
|
224 |
|
|
Int_t _nuisance_model;
|
225 |
|
|
|
226 |
|
|
// random numbers
|
227 |
|
|
TRandom3 r;
|
228 |
|
|
|
229 |
|
|
// expected limits
|
230 |
|
|
Double_t _expected_limit;
|
231 |
|
|
Double_t _low68;
|
232 |
|
|
Double_t _high68;
|
233 |
|
|
Double_t _low95;
|
234 |
|
|
Double_t _high95;
|
235 |
|
|
|
236 |
|
|
};
|
237 |
|
|
|
238 |
|
|
|
239 |
|
|
// default constructor
|
240 |
|
|
CL95Calc::CL95Calc(){
|
241 |
|
|
ws = new RooWorkspace("ws");
|
242 |
|
|
data = 0;
|
243 |
|
|
|
244 |
|
|
sInt = 0;
|
245 |
|
|
bcalc = 0;
|
246 |
|
|
mc.SetName("modelconfig");
|
247 |
|
|
mc.SetTitle("ModelConfig for roostats_cl95");
|
248 |
|
|
|
249 |
|
|
nsig_rel_err = -1.0; // default non-initialized value
|
250 |
|
|
nbkg_rel_err = -1.0; // default non-initialized value
|
251 |
|
|
|
252 |
|
|
// set random seed
|
253 |
|
|
r.SetSeed();
|
254 |
|
|
UInt_t _seed = r.GetSeed();
|
255 |
|
|
UInt_t _pid = gSystem->GetPid();
|
256 |
|
|
std::cout << "[CL95Calc]: random seed: " << _seed << std::endl;
|
257 |
|
|
std::cout << "[CL95Calc]: process ID: " << _pid << std::endl;
|
258 |
|
|
_seed = 31*_seed+_pid;
|
259 |
|
|
std::cout << "[CL95Calc]: new random seed (31*seed+pid): " << _seed << std::endl;
|
260 |
|
|
r.SetSeed(_seed);
|
261 |
|
|
|
262 |
|
|
// set RooFit random seed (it has a private copy)
|
263 |
|
|
RooRandom::randomGenerator()->SetSeed(_seed);
|
264 |
|
|
|
265 |
|
|
// default Gaussian nuisance model
|
266 |
|
|
_nuisance_model = 0;
|
267 |
|
|
}
|
268 |
|
|
|
269 |
|
|
|
270 |
|
|
CL95Calc::~CL95Calc(){
|
271 |
|
|
delete ws;
|
272 |
|
|
delete data;
|
273 |
|
|
delete sInt;
|
274 |
|
|
delete bcalc;
|
275 |
|
|
}
|
276 |
|
|
|
277 |
|
|
|
278 |
|
|
RooWorkspace * CL95Calc::makeWorkspace(Double_t ilum, Double_t slum,
|
279 |
|
|
Double_t eff, Double_t seff,
|
280 |
|
|
Double_t bck, Double_t sbck,
|
281 |
|
|
Bool_t gauss,
|
282 |
|
|
Int_t nuisanceModel){
|
283 |
|
|
|
284 |
|
|
if ( bck>0.0 && (sbck/bck)<5.0 ){
|
285 |
|
|
// check that bck is not too close to zero,
|
286 |
|
|
// so lognormal and gamma modls still make sense
|
287 |
|
|
_nuisance_model = nuisanceModel;
|
288 |
|
|
}
|
289 |
|
|
else{
|
290 |
|
|
_nuisance_model = 0;
|
291 |
|
|
std::cout << "[CL95Calc]: background expectation is too close to zero compared to its uncertainty" << std::endl;
|
292 |
|
|
std::cout << "[CL95Calc]: switching to the Gaussian nuisance model" << std::endl;
|
293 |
|
|
}
|
294 |
|
|
|
295 |
|
|
// Workspace
|
296 |
|
|
// RooWorkspace * ws = new RooWorkspace("ws",true);
|
297 |
|
|
|
298 |
|
|
// observable: number of events
|
299 |
|
|
ws->factory( "n[0]" );
|
300 |
|
|
|
301 |
|
|
// integrated luminosity
|
302 |
|
|
ws->factory( "lumi[0]" );
|
303 |
|
|
|
304 |
|
|
// cross section - parameter of interest
|
305 |
|
|
ws->factory( "xsec[0]" );
|
306 |
|
|
|
307 |
|
|
// selection efficiency * acceptance
|
308 |
|
|
ws->factory( "efficiency[0]" );
|
309 |
|
|
|
310 |
|
|
// nuisance parameter: factor 1 with combined relative uncertainty
|
311 |
|
|
ws->factory( "nsig_nuis[1.0]" ); // will adjust range below
|
312 |
|
|
|
313 |
|
|
// signal yield
|
314 |
|
|
ws->factory( "prod::nsig(lumi,xsec,efficiency, nsig_nuis)" );
|
315 |
|
|
|
316 |
|
|
// estimated background yield
|
317 |
|
|
ws->factory( "bkg_est[0]" );
|
318 |
|
|
|
319 |
|
|
// nuisance parameter: factor 1 with background relative uncertainty
|
320 |
|
|
//ws->factory( "nbkg_nuis[1.0]" ); // will adjust range below
|
321 |
|
|
|
322 |
|
|
// background yield
|
323 |
|
|
//ws->factory( "prod::nbkg(bkg_est, nbkg_nuis)" );
|
324 |
|
|
ws->factory( "nbkg[1.0]" ); // will adjust value and range below
|
325 |
|
|
|
326 |
|
|
// core model:
|
327 |
|
|
ws->factory("sum::yield(nsig,nbkg)");
|
328 |
|
|
if (gauss){
|
329 |
|
|
// Poisson probability with mean signal+bkg
|
330 |
|
|
ws->factory( "Gaussian::model_core(n,yield,expr('sqrt(yield)',yield))" );
|
331 |
|
|
}
|
332 |
|
|
else{
|
333 |
|
|
// Poisson probability with mean signal+bkg
|
334 |
|
|
ws->factory( "Poisson::model_core(n,yield)" );
|
335 |
|
|
}
|
336 |
|
|
|
337 |
|
|
|
338 |
|
|
// systematic uncertainties
|
339 |
|
|
nsig_rel_err = sqrt(slum*slum/ilum/ilum+seff*seff/eff/eff);
|
340 |
|
|
nbkg_rel_err = sbck/bck;
|
341 |
|
|
if (nuisanceModel == 0){ // gaussian model for nuisance parameters
|
342 |
|
|
|
343 |
|
|
std::cout << "[roostats_cl95]: Gaussian PDFs for nuisance parameters" << endl;
|
344 |
|
|
|
345 |
|
|
// cumulative signal uncertainty
|
346 |
|
|
ws->factory( "nsig_sigma[0.1]" );
|
347 |
|
|
ws->factory( "Gaussian::syst_nsig(nsig_nuis, 1.0, nsig_sigma)" );
|
348 |
|
|
// background uncertainty
|
349 |
|
|
ws->factory( "nbkg_sigma[0.1]" );
|
350 |
|
|
//ws->factory( "Gaussian::syst_nbkg(nbkg_nuis, 1.0, nbkg_sigma)" );
|
351 |
|
|
ws->factory( "Gaussian::syst_nbkg(nbkg, bkg_est, nbkg_sigma)" );
|
352 |
|
|
|
353 |
|
|
ws->var("nsig_sigma")->setVal(nsig_rel_err);
|
354 |
|
|
//ws->var("nbkg_sigma")->setVal(nbkg_rel_err);
|
355 |
|
|
ws->var("nbkg_sigma")->setVal(sbck);
|
356 |
|
|
ws->var("nsig_sigma")->setConstant(kTRUE);
|
357 |
|
|
ws->var("nbkg_sigma")->setConstant(kTRUE);
|
358 |
|
|
}
|
359 |
|
|
else if (nuisanceModel == 1){// Lognormal model for nuisance parameters
|
360 |
|
|
|
361 |
|
|
std::cout << "[roostats_cl95]: Lognormal PDFs for nuisance parameters" << endl;
|
362 |
|
|
|
363 |
|
|
// cumulative signal uncertainty
|
364 |
|
|
ws->factory( "nsig_kappa[1.1]" );
|
365 |
|
|
ws->factory( "Lognormal::syst_nsig(nsig_nuis, 1.0, nsig_kappa)" );
|
366 |
|
|
// background uncertainty
|
367 |
|
|
ws->factory( "nbkg_kappa[1.1]" );
|
368 |
|
|
//ws->factory( "Lognormal::syst_nbkg(nbkg_nuis, 1.0, nbkg_kappa)" );
|
369 |
|
|
ws->factory( "Lognormal::syst_nbkg(nbkg, bkg_est, nbkg_kappa)" );
|
370 |
|
|
|
371 |
|
|
ws->var("nsig_kappa")->setVal(1.0 + nsig_rel_err);
|
372 |
|
|
ws->var("nbkg_kappa")->setVal(1.0 + nbkg_rel_err);
|
373 |
|
|
ws->var("nsig_kappa")->setConstant(kTRUE);
|
374 |
|
|
ws->var("nbkg_kappa")->setConstant(kTRUE);
|
375 |
|
|
}
|
376 |
|
|
else if (nuisanceModel == 2){ // Gamma model for nuisance parameters
|
377 |
|
|
|
378 |
|
|
std::cout << "[roostats_cl95]: Gamma PDFs for nuisance parameters" << endl;
|
379 |
|
|
|
380 |
|
|
// cumulative signal uncertainty
|
381 |
|
|
ws->factory( "nsig_beta[0.01]" );
|
382 |
|
|
ws->factory( "nsig_gamma[101.0]" );
|
383 |
|
|
ws->var("nsig_beta") ->setVal(nsig_rel_err*nsig_rel_err);
|
384 |
|
|
ws->var("nsig_gamma")->setVal(1.0/nsig_rel_err/nsig_rel_err + 1.0);
|
385 |
|
|
ws->factory( "Gamma::syst_nsig(nsig_nuis, nsig_gamma, nsig_beta, 0.0)" );
|
386 |
|
|
|
387 |
|
|
// background uncertainty
|
388 |
|
|
ws->factory( "nbkg_beta[0.01]" );
|
389 |
|
|
ws->factory( "nbkg_gamma[101.0]" );
|
390 |
|
|
//ws->var("nbkg_beta") ->setVal(nbkg_rel_err*nbkg_rel_err);
|
391 |
|
|
ws->var("nbkg_beta") ->setVal(sbck*sbck/bck);
|
392 |
|
|
ws->var("nbkg_gamma")->setVal(1.0/nbkg_rel_err/nbkg_rel_err + 1.0);
|
393 |
|
|
//ws->factory( "Gamma::syst_nbkg(nbkg_nuis, nbkg_gamma, nbkg_beta, 0.0)" );
|
394 |
|
|
ws->factory( "Gamma::syst_nbkg(nbkg, nbkg_gamma, nbkg_beta, 0.0)" );
|
395 |
|
|
|
396 |
|
|
ws->var("nsig_beta") ->setConstant(kTRUE);
|
397 |
|
|
ws->var("nsig_gamma")->setConstant(kTRUE);
|
398 |
|
|
ws->var("nbkg_beta") ->setConstant(kTRUE);
|
399 |
|
|
ws->var("nbkg_gamma")->setConstant(kTRUE);
|
400 |
|
|
}
|
401 |
|
|
else{
|
402 |
|
|
std::cout <<"[roostats_cl95]: undefined nuisance parameter model specified, exiting" << std::endl;
|
403 |
|
|
}
|
404 |
|
|
|
405 |
|
|
// model with systematics
|
406 |
|
|
ws->factory( "PROD::model(model_core, syst_nsig, syst_nbkg)" );
|
407 |
|
|
|
408 |
|
|
// flat prior for the parameter of interest
|
409 |
|
|
ws->factory( "Uniform::prior(xsec)" );
|
410 |
|
|
|
411 |
|
|
|
412 |
|
|
// parameter values
|
413 |
|
|
ws->var("lumi") ->setVal(ilum);
|
414 |
|
|
ws->var("efficiency")->setVal(eff);
|
415 |
|
|
ws->var("bkg_est") ->setVal(bck);
|
416 |
|
|
ws->var("xsec") ->setVal(0.0);
|
417 |
|
|
ws->var("nsig_nuis") ->setVal(1.0);
|
418 |
|
|
//ws->var("nbkg_nuis") ->setVal(1.0);
|
419 |
|
|
ws->var("nbkg") ->setVal(bck);
|
420 |
|
|
|
421 |
|
|
// set some parameters as constants
|
422 |
|
|
ws->var("lumi") ->setConstant(kTRUE);
|
423 |
|
|
ws->var("efficiency")->setConstant(kTRUE);
|
424 |
|
|
ws->var("bkg_est") ->setConstant(kTRUE);
|
425 |
|
|
ws->var("n") ->setConstant(kFALSE); // observable
|
426 |
|
|
ws->var("xsec") ->setConstant(kFALSE); // parameter of interest
|
427 |
|
|
ws->var("nsig_nuis") ->setConstant(kFALSE); // nuisance
|
428 |
|
|
//ws->var("nbkg_nuis") ->setConstant(kFALSE); // nuisance
|
429 |
|
|
ws->var("nbkg") ->setConstant(kFALSE); // nuisance
|
430 |
|
|
|
431 |
|
|
// floating parameters ranges
|
432 |
|
|
// crude estimates! Need to know data to do better
|
433 |
|
|
ws->var("n") ->setRange( 0.0, bck+(5.0*sbck)+10.0); // ad-hoc range for obs
|
434 |
|
|
ws->var("xsec") ->setRange( 0.0, 15.0*(1.0+nsig_rel_err)/ilum/eff ); // ad-hoc range for POI
|
435 |
|
|
ws->var("nsig_nuis")->setRange( std::max(0.0, 1.0 - 5.0*nsig_rel_err), 1.0 + 5.0*nsig_rel_err);
|
436 |
|
|
//ws->var("nbkg_nuis")->setRange( std::max(0.0, 1.0 - 5.0*nbkg_rel_err), 1.0 + 5.0*nbkg_rel_err);
|
437 |
|
|
ws->var("nbkg") ->setRange( std::max(0.0, bck - 5.0*sbck), bck + 5.0*sbck);
|
438 |
|
|
|
439 |
|
|
// Definition of observables and parameters of interest
|
440 |
|
|
ws->defineSet("obsSet","n");
|
441 |
|
|
ws->defineSet("poiSet","xsec");
|
442 |
|
|
//ws->defineSet("nuisanceSet","nsig_nuis,nbkg_nuis");
|
443 |
|
|
ws->defineSet("nuisanceSet","nsig_nuis,nbkg");
|
444 |
|
|
|
445 |
|
|
// setup the ModelConfig object
|
446 |
|
|
mc.SetWorkspace(*ws);
|
447 |
|
|
mc.SetPdf(*(ws->pdf("model")));
|
448 |
|
|
mc.SetParametersOfInterest(*(ws->set("poiSet")));
|
449 |
|
|
mc.SetPriorPdf(*(ws->pdf("prior")));
|
450 |
|
|
mc.SetNuisanceParameters(*(ws->set("nuisanceSet")));
|
451 |
|
|
mc.SetObservables(*(ws->set("obsSet")));
|
452 |
|
|
|
453 |
|
|
ws->import(mc);
|
454 |
|
|
|
455 |
|
|
return ws;
|
456 |
|
|
}
|
457 |
|
|
|
458 |
|
|
|
459 |
|
|
RooAbsData * CL95Calc::makeData( Int_t n ){
|
460 |
|
|
//
|
461 |
|
|
// make the dataset owned by the class
|
462 |
|
|
// the current one is deleted
|
463 |
|
|
//
|
464 |
|
|
// set ranges as well
|
465 |
|
|
//
|
466 |
|
|
|
467 |
|
|
// floating parameters ranges
|
468 |
|
|
if (nsig_rel_err < 0.0 || nbkg_rel_err < 0.0){
|
469 |
|
|
std::cout << "[roostats_cl95]: Workspace not initialized, cannot create a dataset" << std::endl;
|
470 |
|
|
return 0;
|
471 |
|
|
}
|
472 |
|
|
|
473 |
|
|
double ilum = ws->var("lumi")->getVal();
|
474 |
|
|
double eff = ws->var("efficiency")->getVal();
|
475 |
|
|
double bck = ws->var("bkg_est")->getVal();
|
476 |
|
|
double sbck = nbkg_rel_err*bck;
|
477 |
|
|
|
478 |
|
|
ws->var("n") ->setRange( 0.0, bck+(5.0*sbck)+10.0*(n+1.0)); // ad-hoc range for obs
|
479 |
|
|
ws->var("xsec") ->setRange( 0.0, 5.0*(1.0+nsig_rel_err)*std::max(10.0,n-bck)/ilum/eff ); // ad-hoc range for POI
|
480 |
|
|
ws->var("nsig_nuis")->setRange( std::max(0.0, 1.0 - 5.0*nsig_rel_err), 1.0 + 5.0*nsig_rel_err);
|
481 |
|
|
//ws->var("nbkg_nuis")->setRange( std::max(0.0, 1.0 - 5.0*nbkg_rel_err), 1.0 + 5.0*nbkg_rel_err);
|
482 |
|
|
ws->var("nbkg") ->setRange( std::max(0.0, bck - 5.0*sbck), bck + 5.0*sbck);
|
483 |
|
|
|
484 |
|
|
// create data
|
485 |
|
|
ws->var("n") ->setVal(n);
|
486 |
|
|
delete data;
|
487 |
|
|
data = new RooDataSet("data","",*(mc.GetObservables()));
|
488 |
|
|
data->add( *(mc.GetObservables()));
|
489 |
|
|
|
490 |
|
|
return data;
|
491 |
|
|
}
|
492 |
|
|
|
493 |
|
|
|
494 |
|
|
Double_t CL95Calc::cl95( std::string method ){
|
495 |
|
|
|
496 |
|
|
// this method assumes that the workspace,
|
497 |
|
|
// data and model config are ready
|
498 |
|
|
|
499 |
|
|
Double_t upper_limit = -1.0;
|
500 |
|
|
|
501 |
|
|
// make RooFit quiet
|
502 |
|
|
RooMsgService::instance().setGlobalKillBelow(RooFit::FATAL);
|
503 |
|
|
|
504 |
|
|
if (method.find("bayesian") != std::string::npos){
|
505 |
|
|
|
506 |
|
|
//prepare Bayesian Calulator
|
507 |
|
|
delete bcalc;
|
508 |
|
|
bcalc = new BayesianCalculator(*data, mc);
|
509 |
|
|
TString namestring = "mybc";
|
510 |
|
|
bcalc->SetName(namestring);
|
511 |
|
|
bcalc->SetConfidenceLevel(0.95);
|
512 |
|
|
bcalc->SetLeftSideTailFraction(0.0);
|
513 |
|
|
|
514 |
|
|
delete sInt;
|
515 |
|
|
sInt = bcalc->GetInterval();
|
516 |
|
|
upper_limit = sInt->UpperLimit();
|
517 |
|
|
delete sInt;
|
518 |
|
|
sInt = 0;
|
519 |
|
|
|
520 |
|
|
}
|
521 |
|
|
else{
|
522 |
|
|
std::cout << "[roostats_cl95]: method " << method
|
523 |
|
|
<< "is not implemented, exiting" <<std::endl;
|
524 |
|
|
return -1.0;
|
525 |
|
|
}
|
526 |
|
|
|
527 |
|
|
return upper_limit;
|
528 |
|
|
|
529 |
|
|
}
|
530 |
|
|
|
531 |
|
|
|
532 |
|
|
Double_t CL95Calc::cla( Double_t ilum, Double_t slum,
|
533 |
|
|
Double_t eff, Double_t seff,
|
534 |
|
|
Double_t bck, Double_t sbck,
|
535 |
|
|
Int_t nuisanceModel,
|
536 |
|
|
std::string method ){
|
537 |
|
|
|
538 |
|
|
makeWorkspace( ilum, slum,
|
539 |
|
|
eff, seff,
|
540 |
|
|
bck, sbck,
|
541 |
|
|
kFALSE,
|
542 |
|
|
nuisanceModel );
|
543 |
|
|
|
544 |
|
|
Double_t CL95A = 0, precision = 1.e-4;
|
545 |
|
|
|
546 |
|
|
Int_t i;
|
547 |
|
|
for (i = bck; i >= 0; i--)
|
548 |
|
|
{
|
549 |
|
|
makeData( i );
|
550 |
|
|
//
|
551 |
|
|
Double_t s95 = cl95( method );
|
552 |
|
|
Double_t s95w =s95*TMath::Poisson( (Double_t)i, bck );
|
553 |
|
|
CL95A += s95w;
|
554 |
|
|
cout << "[roostats_cla]: n = " << i << "; 95% C.L. = " << s95 << " pb; weighted 95% C.L. = " << s95w << " pb; running <s95> = " << CL95A << " pb" << endl;
|
555 |
|
|
//
|
556 |
|
|
if (s95w < CL95A*precision) break;
|
557 |
|
|
}
|
558 |
|
|
cout << "[roostats_cla]: Lower bound on n has been found at " << i+1 << endl;
|
559 |
|
|
//
|
560 |
|
|
for (i = bck+1; ; i++)
|
561 |
|
|
{
|
562 |
|
|
makeData( i );
|
563 |
|
|
Double_t s95 = cl95( method );
|
564 |
|
|
Double_t s95w =s95*TMath::Poisson( (Double_t)i, bck );
|
565 |
|
|
CL95A += s95w;
|
566 |
|
|
cout << "[roostats_cla]: n = " << i << "; 95% C.L. = " << s95 << " pb; weighted 95% C.L. = " << s95w << " pb; running <s95> = " << CL95A << " pb" << endl;
|
567 |
|
|
//
|
568 |
|
|
if (s95w < CL95A*precision) break;
|
569 |
|
|
}
|
570 |
|
|
cout << "[roostats_cla]: Upper bound on n has been found at " << i << endl;
|
571 |
|
|
//
|
572 |
|
|
cout << "[roostats_cla]: Average upper 95% C.L. limit = " << CL95A << " pb" << endl;
|
573 |
|
|
|
574 |
|
|
return CL95A;
|
575 |
|
|
}
|
576 |
|
|
|
577 |
|
|
|
578 |
|
|
|
579 |
|
|
LimitResult CL95Calc::clm( Double_t ilum, Double_t slum,
|
580 |
|
|
Double_t eff, Double_t seff,
|
581 |
|
|
Double_t bck, Double_t sbck,
|
582 |
|
|
Int_t nit, Int_t nuisanceModel,
|
583 |
|
|
std::string method ){
|
584 |
|
|
|
585 |
|
|
makeWorkspace( ilum, slum,
|
586 |
|
|
eff, seff,
|
587 |
|
|
bck, sbck,
|
588 |
|
|
kFALSE,
|
589 |
|
|
nuisanceModel );
|
590 |
|
|
|
591 |
|
|
Double_t CLM = 0.0;
|
592 |
|
|
LimitResult _result;
|
593 |
|
|
|
594 |
|
|
Double_t b68[2] = {0.0, 0.0}; // 1-sigma expected band
|
595 |
|
|
Double_t b95[2] = {0.0, 0.0}; // 2-sigma expected band
|
596 |
|
|
|
597 |
|
|
std::vector<Double_t> pe;
|
598 |
|
|
|
599 |
|
|
// timer
|
600 |
|
|
TStopwatch t;
|
601 |
|
|
t.Start(); // start timer
|
602 |
|
|
Double_t _realtime = 0.0;
|
603 |
|
|
Double_t _cputime = 0.0;
|
604 |
|
|
Double_t _realtime_last = 0.0;
|
605 |
|
|
Double_t _cputime_last = 0.0;
|
606 |
|
|
Double_t _realtime_average = 0.0;
|
607 |
|
|
Double_t _cputime_average = 0.0;
|
608 |
|
|
|
609 |
|
|
// throw pseudoexperiments
|
610 |
|
|
if (nit <= 0)return _result;
|
611 |
|
|
for (Int_t i = 0; i < nit; i++)
|
612 |
|
|
{
|
613 |
|
|
// throw random nuisance parameter (bkg yield)
|
614 |
|
|
if (nuisanceModel == 0){ // gaussian model for nuisance parameters
|
615 |
|
|
RooRealVar * _nuis = ws->var("nbkg_sigma");
|
616 |
|
|
if (_nuis){
|
617 |
|
|
_nuis->setVal(sbck);
|
618 |
|
|
}
|
619 |
|
|
else{ // nuisance model is misconfigured - fail
|
620 |
|
|
std::cout << "[roostats_clm]: nsig_sigma missing, model misconfigured, exiting..." << std::endl;
|
621 |
|
|
exit(-1);
|
622 |
|
|
}
|
623 |
|
|
}
|
624 |
|
|
// FIXME: add non-Gaussian nuisance
|
625 |
|
|
Double_t bmean = GetRandom("syst_nbkg", "nbkg");
|
626 |
|
|
|
627 |
|
|
Int_t n = r.Poisson(bmean);
|
628 |
|
|
makeData( n );
|
629 |
|
|
std::cout << "Invoking CL95 with bmean = " << bmean << "; n = " << n << std::endl;
|
630 |
|
|
|
631 |
|
|
Double_t _pe = cl95( method );
|
632 |
|
|
pe.push_back(_pe);
|
633 |
|
|
CLM += pe[i];
|
634 |
|
|
|
635 |
|
|
_realtime_last = t.RealTime() - _realtime;
|
636 |
|
|
_cputime_last = t.CpuTime() - _cputime;
|
637 |
|
|
_realtime = t.RealTime();
|
638 |
|
|
_cputime = t.CpuTime();
|
639 |
|
|
t.Continue();
|
640 |
|
|
_realtime_average = _realtime/((Double_t)(i+1));
|
641 |
|
|
_cputime_average = _cputime/((Double_t)(i+1));
|
642 |
|
|
|
643 |
|
|
std::cout << "n = " << n << "; 95% C.L. = " << _pe << " pb; running <s95> = " << CLM/(i+1.) << std::endl;
|
644 |
|
|
std::cout << "Real time (s), this iteration: " << _realtime_last << ", average per iteration: " << _realtime_average << ", total: " << _realtime << std::endl;
|
645 |
|
|
std::cout << "CPU time (s), this iteration: " << _cputime_last << ", average per iteration: " << _cputime_average << ", total: " << _cputime << std::endl << std::endl;
|
646 |
|
|
}
|
647 |
|
|
|
648 |
|
|
CLM /= nit;
|
649 |
|
|
|
650 |
|
|
// sort the vector with limits
|
651 |
|
|
std::sort(pe.begin(), pe.end());
|
652 |
|
|
|
653 |
|
|
std::cout << pe.size() << std::endl;
|
654 |
|
|
|
655 |
|
|
// median for the expected limit
|
656 |
|
|
Double_t _median = TMath::Median(nit, &pe[0]);
|
657 |
|
|
|
658 |
|
|
// quantiles for the expected limit bands
|
659 |
|
|
Double_t _prob[4]; // array with quantile boundaries
|
660 |
|
|
_prob[0] = 0.021;
|
661 |
|
|
_prob[1] = 0.159;
|
662 |
|
|
_prob[2] = 0.841;
|
663 |
|
|
_prob[3] = 0.979;
|
664 |
|
|
|
665 |
|
|
Double_t _quantiles[4]; // array for the results
|
666 |
|
|
|
667 |
|
|
TMath::Quantiles(nit, 4, &pe[0], _quantiles, _prob); // evaluate quantiles
|
668 |
|
|
|
669 |
|
|
b68[0] = _quantiles[1];
|
670 |
|
|
b68[1] = _quantiles[2];
|
671 |
|
|
b95[0] = _quantiles[0];
|
672 |
|
|
b95[1] = _quantiles[3];
|
673 |
|
|
|
674 |
|
|
// let's get actual coverages now
|
675 |
|
|
|
676 |
|
|
// sort the vector with limits
|
677 |
|
|
std::sort(pe.begin(), pe.end());
|
678 |
|
|
Long64_t lc68 = TMath::BinarySearch(nit, &pe[0], _quantiles[1]) + 1;
|
679 |
|
|
Long64_t uc68 = nit - TMath::BinarySearch(nit, &pe[0], _quantiles[2]) - 1;
|
680 |
|
|
Long64_t lc95 = TMath::BinarySearch(nit, &pe[0], _quantiles[0]) + 1;
|
681 |
|
|
Long64_t uc95 = nit - TMath::BinarySearch(nit, &pe[0], _quantiles[3]) - 1;
|
682 |
|
|
|
683 |
|
|
Double_t _cover68 = (nit - lc68 - uc68)*100./nit;
|
684 |
|
|
Double_t _cover95 = (nit - lc95 - uc95)*100./nit;
|
685 |
|
|
|
686 |
|
|
std::cout << "[CL95Calc::clm()]: median limit: " << _median << std::endl;
|
687 |
|
|
std::cout << "[CL95Calc::clm()]: 1 sigma band: [" << b68[0] << "," << b68[1] << "]; actual coverage: " << _cover68 << "%; lower/upper percentile: " << lc68*100./nit <<"/" << uc68*100./nit << std::endl;
|
688 |
|
|
std::cout << "[CL95Calc::clm()]: 2 sigma band: [" << b95[0] << "," << b95[1] << "]; actual coverage: " << _cover95 << "%; lower/upper percentile: " << lc95*100./nit <<"/" << uc95*100./nit << std::endl;
|
689 |
|
|
|
690 |
|
|
t.Print();
|
691 |
|
|
|
692 |
|
|
_result._expected_limit = _median;
|
693 |
|
|
_result._low68 = b68[0];
|
694 |
|
|
_result._high68 = b68[1];
|
695 |
|
|
_result._low95 = b95[0];
|
696 |
|
|
_result._high95 = b95[1];
|
697 |
|
|
_result._cover68 = _cover68;
|
698 |
|
|
_result._cover95 = _cover95;
|
699 |
|
|
|
700 |
|
|
return _result;
|
701 |
|
|
}
|
702 |
|
|
|
703 |
|
|
|
704 |
|
|
|
705 |
|
|
int CL95Calc::makePlot( std::string method,
|
706 |
|
|
std::string plotFileName ){
|
707 |
|
|
|
708 |
|
|
if (method.find("bayesian") != std::string::npos){
|
709 |
|
|
|
710 |
|
|
std::cout << "[roostats_cl95]: making Bayesian posterior plot" << endl;
|
711 |
|
|
|
712 |
|
|
TCanvas c1("posterior");
|
713 |
|
|
bcalc->SetScanOfPosterior(100);
|
714 |
|
|
RooPlot * plot = bcalc->GetPosteriorPlot();
|
715 |
|
|
plot->Draw();
|
716 |
|
|
c1.SaveAs(plotFileName.c_str());
|
717 |
|
|
}
|
718 |
|
|
else{
|
719 |
|
|
std::cout << "[roostats_cl95]: method " << method
|
720 |
|
|
<< "is not implemented, exiting" <<std::endl;
|
721 |
|
|
return -1;
|
722 |
|
|
}
|
723 |
|
|
|
724 |
|
|
return 0;
|
725 |
|
|
}
|
726 |
|
|
|
727 |
|
|
|
728 |
|
|
|
729 |
|
|
Double_t CL95Calc::GetRandom( std::string pdf, std::string var ){
|
730 |
|
|
//
|
731 |
|
|
// generates a random number using a pdf in the workspace
|
732 |
|
|
//
|
733 |
|
|
|
734 |
|
|
// generate a dataset with one entry
|
735 |
|
|
RooDataSet * _ds = ws->pdf(pdf.c_str())->generate(*ws->var(var.c_str()), 1);
|
736 |
|
|
|
737 |
|
|
Double_t _result = ((RooRealVar *)(_ds->get(0)->first()))->getVal();
|
738 |
|
|
delete _ds;
|
739 |
|
|
|
740 |
|
|
return _result;
|
741 |
|
|
}
|
742 |
|
|
|
743 |
|
|
|
744 |
|
|
|
745 |
|
|
Int_t banner(){
|
746 |
|
|
//#define __ROOFIT_NOBANNER // banner temporary off
|
747 |
|
|
#ifndef __EXOST_NOBANNER
|
748 |
|
|
std::cout << desc << std::endl;
|
749 |
|
|
#endif
|
750 |
|
|
return 0 ;
|
751 |
|
|
}
|
752 |
|
|
|
753 |
|
|
static Int_t dummy_ = banner() ;
|
754 |
|
|
|
755 |
|
|
|
756 |
|
|
|
757 |
|
|
Double_t roostats_cl95(Double_t ilum, Double_t slum,
|
758 |
|
|
Double_t eff, Double_t seff,
|
759 |
|
|
Double_t bck, Double_t sbck,
|
760 |
|
|
Int_t n,
|
761 |
|
|
Bool_t gauss,
|
762 |
|
|
Int_t nuisanceModel,
|
763 |
|
|
std::string method,
|
764 |
|
|
std::string plotFileName){
|
765 |
|
|
|
766 |
|
|
std::cout << "[roostats_cl95]: estimating 95% C.L. upper limit" << endl;
|
767 |
|
|
if (method.find("bayesian") != std::string::npos){
|
768 |
|
|
std::cout << "[roostats_cl95]: using Bayesian calculation via numeric integration" << endl;
|
769 |
|
|
}
|
770 |
|
|
else if (method.find("workspace") != std::string::npos){
|
771 |
|
|
std::cout << "[roostats_cl95]: no interval calculation, only create and save workspace" << endl;
|
772 |
|
|
}
|
773 |
|
|
else{
|
774 |
|
|
std::cout << "[roostats_cl95]: method " << method
|
775 |
|
|
<< "is not implemented, exiting" <<std::endl;
|
776 |
|
|
return -1.0;
|
777 |
|
|
}
|
778 |
|
|
|
779 |
|
|
// some input validation
|
780 |
|
|
if (n < 0){
|
781 |
|
|
std::cout << "Negative observed number of events specified, exiting" << std::endl;
|
782 |
|
|
return -1.0;
|
783 |
|
|
}
|
784 |
|
|
|
785 |
|
|
if (n == 0) gauss = kFALSE;
|
786 |
|
|
|
787 |
|
|
if (gauss){
|
788 |
|
|
nuisanceModel = 0;
|
789 |
|
|
std::cout << "[roostats_cl95]: Gaussian statistics used" << endl;
|
790 |
|
|
}
|
791 |
|
|
else{
|
792 |
|
|
std::cout << "[roostats_cl95]: Poisson statistics used" << endl;
|
793 |
|
|
}
|
794 |
|
|
|
795 |
|
|
// limit calculation
|
796 |
|
|
CL95Calc theCalc;
|
797 |
|
|
RooWorkspace * ws = theCalc.makeWorkspace( ilum, slum,
|
798 |
|
|
eff, seff,
|
799 |
|
|
bck, sbck,
|
800 |
|
|
gauss,
|
801 |
|
|
nuisanceModel );
|
802 |
|
|
RooDataSet * data = (RooDataSet *)( theCalc.makeData( n )->Clone() );
|
803 |
|
|
data->SetName("observed_data");
|
804 |
|
|
ws->import(*data);
|
805 |
|
|
|
806 |
|
|
ws->Print();
|
807 |
|
|
|
808 |
|
|
ws->SaveAs("ws.root");
|
809 |
|
|
|
810 |
|
|
// if only workspace requested, exit here
|
811 |
|
|
if ( method.find("workspace") != std::string::npos ) return 0.0;
|
812 |
|
|
|
813 |
|
|
std::cout << "[roostats_cl95]: Range of allowed cross section values: ["
|
814 |
|
|
<< ws->var("xsec")->getMin() << ", "
|
815 |
|
|
<< ws->var("xsec")->getMax() << "]" << std::endl;
|
816 |
|
|
Double_t limit = theCalc.cl95( method );
|
817 |
|
|
std::cout << "[roostats_cl95]: 95% C.L. upper limit: " << limit << std::endl;
|
818 |
|
|
|
819 |
|
|
// check if the plot is requested
|
820 |
|
|
if (plotFileName.size() != 0){
|
821 |
|
|
theCalc.makePlot(method, plotFileName);
|
822 |
|
|
}
|
823 |
|
|
|
824 |
|
|
return limit;
|
825 |
|
|
}
|
826 |
|
|
|
827 |
|
|
|
828 |
|
|
Double_t roostats_cla(Double_t ilum, Double_t slum,
|
829 |
|
|
Double_t eff, Double_t seff,
|
830 |
|
|
Double_t bck, Double_t sbck,
|
831 |
|
|
Int_t nuisanceModel,
|
832 |
|
|
std::string method){
|
833 |
|
|
|
834 |
|
|
Double_t limit = -1.0;
|
835 |
|
|
|
836 |
|
|
std::cout << "[roostats_cla]: estimating average 95% C.L. upper limit" << endl;
|
837 |
|
|
if (method.find("bayesian") != std::string::npos){
|
838 |
|
|
std::cout << "[roostats_cla]: using Bayesian calculation via numeric integration" << endl;
|
839 |
|
|
}
|
840 |
|
|
else{
|
841 |
|
|
std::cout << "[roostats_cla]: method " << method
|
842 |
|
|
<< "is not implemented, exiting" <<std::endl;
|
843 |
|
|
return -1.0;
|
844 |
|
|
}
|
845 |
|
|
|
846 |
|
|
std::cout << "[roostats_cla]: Poisson statistics used" << endl;
|
847 |
|
|
|
848 |
|
|
CL95Calc theCalc;
|
849 |
|
|
limit = theCalc.cla( ilum, slum,
|
850 |
|
|
eff, seff,
|
851 |
|
|
bck, sbck,
|
852 |
|
|
nuisanceModel,
|
853 |
|
|
method );
|
854 |
|
|
|
855 |
|
|
//std::cout << "[roostats_cla]: average 95% C.L. upper limit: " << limit << std::endl;
|
856 |
|
|
|
857 |
|
|
return limit;
|
858 |
|
|
}
|
859 |
|
|
|
860 |
|
|
|
861 |
|
|
|
862 |
|
|
LimitResult roostats_clm(Double_t ilum, Double_t slum,
|
863 |
|
|
Double_t eff, Double_t seff,
|
864 |
|
|
Double_t bck, Double_t sbck,
|
865 |
|
|
Int_t nit, Int_t nuisanceModel,
|
866 |
|
|
std::string method){
|
867 |
|
|
|
868 |
|
|
//Double_t limit = -1.0;
|
869 |
|
|
LimitResult limit;
|
870 |
|
|
|
871 |
|
|
std::cout << "[roostats_clm]: estimating average 95% C.L. upper limit" << endl;
|
872 |
|
|
if (method.find("bayesian") != std::string::npos){
|
873 |
|
|
std::cout << "[roostats_clm]: using Bayesian calculation via numeric integration" << endl;
|
874 |
|
|
}
|
875 |
|
|
else{
|
876 |
|
|
std::cout << "[roostats_clm]: method " << method
|
877 |
|
|
<< "is not implemented, exiting" <<std::endl;
|
878 |
|
|
//return -1.0;
|
879 |
|
|
return limit;
|
880 |
|
|
}
|
881 |
|
|
|
882 |
|
|
std::cout << "[roostats_clm]: Poisson statistics used" << endl;
|
883 |
|
|
|
884 |
|
|
CL95Calc theCalc;
|
885 |
|
|
limit = theCalc.clm( ilum, slum,
|
886 |
|
|
eff, seff,
|
887 |
|
|
bck, sbck,
|
888 |
|
|
nit, nuisanceModel,
|
889 |
|
|
method );
|
890 |
|
|
|
891 |
|
|
return limit;
|
892 |
|
|
}
|