ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/cbrown/Development/Plotting/Modules/ExtendedMath.C
Revision: 1.1
Committed: Wed Jun 26 05:24:04 2013 UTC (11 years, 10 months ago) by buchmann
Content type: text/plain
Branch: MAIN
CVS Tags: HEAD
Log Message:
Good morning commit: some mathematical functions that surpass root's standard range: exponential integral ei and exponential integrals en (needed for ttbar shape normalization)

File Contents

# Content
1 #include <math.h>
2 #include <TMath.h>
3
4
5
6 //************** EXPONENTIAL INTEGRALS En *****
7 // define: E_n(x) = \int_1^infty{exp(-xt)/t^n}dt, x>0, n=0,1,...
8 double expint(int n, double x) {
9 // based on Numerical Recipes in C
10 const double euler = 0.57721566; // Euler's constant, gamma
11 const int maxit = 100; // max. no. of iterations allowed
12 const double fpmin = 1.0e-30; // close to smallest floating-point number
13 const double eps = 6.0e-8; // relative error, or absolute error near
14 // the zero of Ei at x=0.3725
15
16 int i, ii, nm1;
17 double a,b,c,d,del,fact,h,psi,ans;
18
19 nm1=n-1;
20 if(n<0 || x<0 || (x==0 && (n==0 || n==1))) {
21 cout << "Bad argument for expint(n,x)" << endl; return -1;
22 }
23 else {
24 if(n==0) ans=exp(-x)/x;
25 else {
26 if(x==0) ans=1.0/nm1;
27 else {
28 if(x>1) {
29 b=x+n;
30 c=1.0/fpmin;
31 d=1.0/b;
32 h=d;
33 for(i=1; i<maxit; i++) {
34 a = -i*(nm1+i);
35 b += 2.0;
36 d=1.0/(a*d+b);
37 c=b+a/c;
38 del=c*d;
39 h *= del;
40 if(fabs(del-1.0)<eps) {
41 ans=h*exp(-x);
42 return ans;
43 }
44 }
45 cout << "***continued fraction failed in expint(n,x)!!!" << endl;
46 return -1;
47 } else {
48 ans = (nm1!=0 ? 1.0/nm1 : -log(x)-euler);
49 fact=1;
50 for(i=1; i<=maxit; i++) {
51 fact *= -x/i;
52 if(i!=nm1) del = -fact/(i-nm1);
53 else {
54 psi = -euler;
55 for(ii=1; ii<=nm1; ii++) psi += 1.0/ii;
56 del = fact*(-log(x)+psi);
57 }
58 ans += del;
59 if(fabs(del)<fabs(ans)*eps) return ans;
60 }
61 cout << "***series failed in expint!!!" << endl;
62 return -1;
63 }
64 }
65 }
66 }
67
68 return ans;
69 }
70 //*********************************************
71
72
73 //************** EXPONENTIAL INTEGRAL Ei ******
74 // define: ei(x) = -\int_{-x}^{\infty}{exp(-t)/t}dt, for x>0
75 // power series: ei(x) = eulerconst + ln(x) + x/(1*1!) + x^2/(2*2!) + ...
76 double ei(double x)
77 { // taken from Numerical Recipes in C
78 const double euler = 0.57721566; // Euler's constant, gamma
79 const int maxit = 100; // max. no. of iterations allowed
80 const double fpmin = 1.0e-40; // close to smallest floating-point number
81 const double eps = 1.0e-30; // relative error, or absolute error near
82 // the zero of Ei at x=0.3725
83 // I actually changed fpmin and eps into smaller values than in NR
84
85 int k;
86 double fact, prev, sum, term;
87
88 // special case
89 if(x < 0) return -expint(1,-x);
90
91 if(x == 0.0) { cout << "Bad argument for ei(x)" << endl; return -1; }
92 if(x < fpmin) return log(x)+euler;
93 if(x <= -log(eps)) {
94 sum = 0;
95 fact = 1;
96 for(k=1; k<=maxit; k++) {
97 fact *= x/k;
98 term = fact/k;
99 sum += term;
100 if(term < eps*sum) break;
101 }
102 if(k>maxit) { cout << "Series failed in ei(x)" << endl; return -1; }
103 return sum+log(x)+euler;
104 } else {
105 sum = 0;
106 term = 1;
107 for(k=1; k<=maxit; k++) {
108 prev = term;
109 term *= k/x;
110 if(term<eps) break;
111 if(term<prev) sum+=term;
112 else {
113 sum -= prev;
114 break;
115 }
116 }
117 return exp(x)*(1.0+sum)/x;
118 }
119 }
120 //*********************************************