1 |
buchmann |
1.1 |
#include <iostream>
|
2 |
|
|
|
3 |
|
|
using namespace std;
|
4 |
|
|
|
5 |
buchmann |
1.17 |
float Get_Met_Z_Prediction(TCut JetCut, float MetCut, int isdata, bool isDYonly);
|
6 |
|
|
|
7 |
buchmann |
1.24 |
namespace MetPlotsSpace {
|
8 |
buchmann |
1.28 |
float Zprediction_Uncertainty=0.2;
|
9 |
buchmann |
1.30 |
float Zestimate__data=-1;
|
10 |
|
|
float Zestimate__data_sys=-1;
|
11 |
|
|
float Zestimate__data_stat=-1;
|
12 |
|
|
float Zestimate__mc=-1;
|
13 |
|
|
float Zestimate__mc_sys=-1;
|
14 |
|
|
float Zestimate__mc_stat=-1;
|
15 |
|
|
float Zestimate__dy=-1;
|
16 |
|
|
float Zestimate__dy_sys=-1;
|
17 |
|
|
float Zestimate__dy_stat=-1;
|
18 |
buchmann |
1.24 |
}
|
19 |
buchmann |
1.17 |
|
20 |
buchmann |
1.30 |
void ExperimentalMetPrediction(bool QuickRun);
|
21 |
|
|
|
22 |
|
|
void ExtractScaleFactor(TH1F *mllSF,TH1F *mllOF, THStack* mcMllSF, THStack* mcMllOF, TH1F *prediction, TLegend *leg, string saveasSig, TBox *srbox) {
|
23 |
|
|
Int_t minbin = mllSF->FindBin(20.);
|
24 |
|
|
Int_t maxbin = mllSF->FindBin(70.-1);
|
25 |
|
|
|
26 |
|
|
// Get yields in OF region
|
27 |
|
|
Float_t iDataOF = mllOF->Integral();
|
28 |
|
|
Float_t iDataOFSR = mllOF->Integral(minbin,maxbin);
|
29 |
|
|
Float_t iMCOF = 0.0;
|
30 |
|
|
Float_t iMCOFSR = 0.0;
|
31 |
|
|
TIter nextOF(mcMllOF->GetHists());
|
32 |
|
|
TH1F* h;
|
33 |
|
|
while ( h = (TH1F*)nextOF() ) {
|
34 |
|
|
iMCOF += h->Integral();
|
35 |
|
|
iMCOFSR += h->Integral(minbin,maxbin);
|
36 |
|
|
}
|
37 |
|
|
Float_t scale = iDataOF/iMCOF;
|
38 |
|
|
|
39 |
|
|
// Re-scale OF
|
40 |
|
|
nextOF = TIter(mcMllOF->GetHists());
|
41 |
|
|
|
42 |
|
|
while ( h = (TH1F*)nextOF() ) {
|
43 |
|
|
h->Scale(scale);
|
44 |
|
|
}
|
45 |
|
|
|
46 |
|
|
nextOF = TIter(mcMllOF->GetHists());
|
47 |
|
|
|
48 |
|
|
// Rescale SF and count in signal region
|
49 |
|
|
std::cout << "Integrating from " << mllSF->GetBinLowEdge(minbin) << " to " << mllSF->GetBinLowEdge(maxbin)+mllSF->GetBinWidth(maxbin) << std::endl;
|
50 |
|
|
|
51 |
|
|
Float_t iDataSFSR = mllSF->Integral(minbin,maxbin);
|
52 |
|
|
Float_t iMCSFSR = 0.0;
|
53 |
|
|
TIter nextSF = TIter(mcMllSF->GetHists());
|
54 |
|
|
while ( h = (TH1F*)nextSF() ) {
|
55 |
|
|
h->Scale(scale);
|
56 |
|
|
iMCSFSR += h->Integral(minbin,maxbin);
|
57 |
|
|
}
|
58 |
|
|
|
59 |
|
|
nextSF = TIter(mcMllSF->GetHists());
|
60 |
|
|
while ( h = (TH1F*)nextSF() ) {
|
61 |
|
|
iMCSFSR += h->Integral(minbin,maxbin);
|
62 |
|
|
}
|
63 |
|
|
mcMllSF->Modified();
|
64 |
|
|
|
65 |
|
|
TPad* rcan2 = new TPad("rcan2","rcan2",0,0,1,1);
|
66 |
|
|
rcan2->cd();
|
67 |
|
|
mllSF->Draw();
|
68 |
|
|
mcMllSF->Draw("same");
|
69 |
|
|
prediction->Draw("histo,same");
|
70 |
|
|
mllSF->Draw("same");
|
71 |
|
|
DrawPrelim();
|
72 |
|
|
stringstream leghead;
|
73 |
|
|
leghead << "MC scaled by " << std::setprecision(2) << scale << "";
|
74 |
|
|
cout << "SCALE: " << scale << endl;
|
75 |
|
|
TH1F *histo = new TH1F("histo","histo",1,0,1);histo->SetLineColor(kWhite);
|
76 |
|
|
leg->AddEntry(histo,leghead.str().c_str(),"l");
|
77 |
|
|
leg->Draw();
|
78 |
|
|
srbox->Draw();
|
79 |
|
|
stringstream saveasSig2;
|
80 |
|
|
saveasSig2 << saveasSig << "__mcScaled";
|
81 |
|
|
rcan2->Update();
|
82 |
|
|
save_with_ratio( mllSF, *mcMllSF, rcan2, saveasSig2.str() );
|
83 |
buchmann |
1.32 |
|
84 |
|
|
// restore original stacks
|
85 |
|
|
nextOF = TIter(mcMllOF->GetHists());
|
86 |
|
|
|
87 |
|
|
while ( h = (TH1F*)nextOF() ) {
|
88 |
|
|
h->Scale(1/scale);
|
89 |
|
|
}
|
90 |
|
|
|
91 |
|
|
nextSF = TIter(mcMllSF->GetHists());
|
92 |
|
|
while ( h = (TH1F*)nextSF() ) {
|
93 |
|
|
h->Scale(1/scale);
|
94 |
|
|
}
|
95 |
|
|
mcMllSF->Modified();
|
96 |
|
|
mcMllOF->Modified();
|
97 |
|
|
|
98 |
buchmann |
1.30 |
}
|
99 |
|
|
|
100 |
|
|
|
101 |
|
|
|
102 |
|
|
|
103 |
|
|
|
104 |
|
|
|
105 |
|
|
|
106 |
|
|
|
107 |
|
|
|
108 |
buchmann |
1.1 |
TGraphErrors* MakeErrorGraph(TH1F *histo) {
|
109 |
|
|
|
110 |
|
|
float dx[histo->GetNbinsX()];
|
111 |
|
|
float dy[histo->GetNbinsX()];
|
112 |
|
|
float x[histo->GetNbinsX()];
|
113 |
|
|
float y[histo->GetNbinsX()];
|
114 |
|
|
for(int i=1;i<=histo->GetNbinsX();i++) {
|
115 |
|
|
x[i-1]=histo->GetBinCenter(i);
|
116 |
|
|
y[i-1]=histo->GetBinContent(i);
|
117 |
|
|
if(i>1) dx[i-1]=(histo->GetBinCenter(i)-histo->GetBinCenter(i-1))/2.0;
|
118 |
|
|
else dx[i-1]=(histo->GetBinCenter(i+1)-histo->GetBinCenter(i))/2.0;
|
119 |
|
|
dy[i-1]=histo->GetBinError(i);
|
120 |
|
|
}
|
121 |
|
|
|
122 |
|
|
TGraphErrors *gr = new TGraphErrors(histo->GetNbinsX(),x,y,dx,dy);
|
123 |
|
|
gr->SetFillColor(TColor::GetColor("#2E9AFE"));
|
124 |
|
|
return gr;
|
125 |
|
|
}
|
126 |
|
|
|
127 |
fronga |
1.22 |
void ProduceMetPlotsWithCut(TCut cut, string name, float cutat, int njets, bool doMC = false, float ymax = 80 ) {
|
128 |
buchmann |
1.30 |
|
129 |
|
|
bool UseSpecialZprediction=false;
|
130 |
|
|
|
131 |
|
|
if(cutat==100 && name=="") {
|
132 |
|
|
UseSpecialZprediction=true;
|
133 |
|
|
bool ReRunEstimate=false;
|
134 |
|
|
//need to check if the results have already been stored; if not, need to get the estimate!
|
135 |
|
|
if(MetPlotsSpace::Zestimate__data<0) ReRunEstimate=true;
|
136 |
|
|
if(MetPlotsSpace::Zestimate__data_stat<0) ReRunEstimate=true;
|
137 |
|
|
if(MetPlotsSpace::Zestimate__data_sys<0) ReRunEstimate=true;
|
138 |
|
|
if(MetPlotsSpace::Zestimate__mc<0) ReRunEstimate=true;
|
139 |
|
|
if(MetPlotsSpace::Zestimate__mc_stat<0) ReRunEstimate=true;
|
140 |
|
|
if(MetPlotsSpace::Zestimate__mc_sys<0) ReRunEstimate=true;
|
141 |
|
|
if(MetPlotsSpace::Zestimate__dy<0) ReRunEstimate=true;
|
142 |
|
|
if(MetPlotsSpace::Zestimate__dy_stat<0) ReRunEstimate=true;
|
143 |
|
|
if(MetPlotsSpace::Zestimate__dy_sys<0) ReRunEstimate=true;
|
144 |
|
|
cout << "****************** About to do Z prediction " << endl;
|
145 |
|
|
if(ReRunEstimate) ExperimentalMetPrediction(true);//doing quick run (i.e. only data)
|
146 |
|
|
cout << "****************** Done predicting the Z " << endl;
|
147 |
|
|
}
|
148 |
fronga |
1.16 |
|
149 |
buchmann |
1.1 |
TCanvas *tcan = new TCanvas("tcan","tcan");
|
150 |
|
|
cout << "Doing met plots" << endl;
|
151 |
buchmann |
1.2 |
stringstream MetBaseCuts;
|
152 |
fronga |
1.7 |
MetBaseCuts << "met[4]>" << cutat << "&&" << cut.GetTitle();
|
153 |
|
|
stringstream snjets;
|
154 |
|
|
snjets << njets;
|
155 |
buchmann |
1.2 |
TCut MetBaseCut(MetBaseCuts.str().c_str());
|
156 |
fronga |
1.10 |
TCut nJetsSignal(PlottingSetup::basicqualitycut&&("pfJetGoodNum40>="+snjets.str()).c_str());
|
157 |
fronga |
1.22 |
TCut nJetsControl(PlottingSetup::basiccut&&("met[4]>100&&met[4]<150&&pfJetGoodID[0]!=0&&pfJetGoodNum40=="+snjets.str()+"-1").c_str()); // Only njets vary
|
158 |
fronga |
1.16 |
|
159 |
|
|
if ( !PlottingSetup::openBox ) {
|
160 |
buchmann |
1.34 |
nJetsSignal += TCut("mll>70");
|
161 |
fronga |
1.16 |
}
|
162 |
buchmann |
1.1 |
|
163 |
|
|
//compute SF / OF rate in (CR1+CR2), should give 0.941 +/- 0.05
|
164 |
fronga |
1.7 |
|
165 |
|
|
// Create histograms
|
166 |
fronga |
1.9 |
//int nbins = 30;
|
167 |
|
|
int nbins = 60;
|
168 |
buchmann |
1.17 |
float xmin=15., xmax = 315.;
|
169 |
|
|
TH1F *mllsigEE = allsamples.Draw("mllsigEE","mll",nbins,xmin,xmax,"m_{ee} [GeV]", "events",TCut(cutOSSF&&MetBaseCut&&nJetsSignal&&"id1==0"),data,PlottingSetup::luminosity);
|
170 |
|
|
TH1F *mllsigMM = allsamples.Draw("mllsigMM","mll",nbins,xmin,xmax,"m_{#mu#mu} [GeV]","events",TCut(cutOSSF&&MetBaseCut&&nJetsSignal&&"id1==1"),data,PlottingSetup::luminosity);
|
171 |
fronga |
1.22 |
TH1F *mllscon = allsamples.Draw("mllscon","mll",nbins,xmin,xmax,"m_{ll} [GeV]", "events",TCut(cutOSSF&&cut&&nJetsControl),data,PlottingSetup::luminosity);
|
172 |
fronga |
1.7 |
TH1F *mllOsig = allsamples.Draw("mllOsig", "mll",nbins,xmin,xmax,"m_{ll} [GeV]","events",TCut(cutOSOF&&MetBaseCut&&nJetsSignal),data,PlottingSetup::luminosity);
|
173 |
fronga |
1.22 |
TH1F *mllOscon = allsamples.Draw("mllOscon","mll",nbins,xmin,xmax,"m_{ll} [GeV]","events",TCut(cutOSOF&&cut&&nJetsControl),data,PlottingSetup::luminosity);
|
174 |
fronga |
1.7 |
|
175 |
fronga |
1.8 |
TH1F* mllsig = (TH1F*)mllsigEE->Clone("mllsig");
|
176 |
|
|
mllsig->Add(mllsigMM);
|
177 |
|
|
mllsig->GetXaxis()->SetTitle("m_{ll} [GeV]");
|
178 |
|
|
|
179 |
|
|
THStack *mcMllsig, *mcMllsigEE,*mcMllsigMM,*mcMllscon,*mcMllsconEE,*mcMllsconMM, *mcMllOsig, *mcMllOscon;
|
180 |
fronga |
1.7 |
if ( doMC ) {
|
181 |
|
|
name += "_mc";
|
182 |
fronga |
1.8 |
mcMllsig = new THStack(allsamples.DrawStack("mcMllsig","mll",nbins,xmin,xmax,"m_{ll} [GeV]","events",TCut(cutOSSF&&MetBaseCut&&nJetsSignal),mc,PlottingSetup::luminosity));
|
183 |
|
|
mcMllsigEE = new THStack(allsamples.DrawStack("mcMllsigEE","mll",nbins,xmin,xmax,"m_{ee} [GeV]","events",TCut(cutOSSF&&MetBaseCut&&nJetsSignal&&"id1==0"),mc,PlottingSetup::luminosity));
|
184 |
|
|
mcMllsigMM = new THStack(allsamples.DrawStack("mcMllsigMM","mll",nbins,xmin,xmax,"m_{#mu#mu} [GeV]","events",TCut(cutOSSF&&MetBaseCut&&nJetsSignal&&"id1==1"),mc,PlottingSetup::luminosity));
|
185 |
fronga |
1.22 |
mcMllscon = new THStack(allsamples.DrawStack("mcMllscon","mll",nbins,xmin,xmax,"m_{ll} [GeV]","events",TCut(cutOSSF&&cut&&nJetsControl),mc,PlottingSetup::luminosity));
|
186 |
fronga |
1.8 |
mcMllOsig = new THStack(allsamples.DrawStack("mcMllOsig","mll",nbins,xmin,xmax,"m_{ll} [GeV]","events",TCut(cutOSOF&&MetBaseCut&&nJetsSignal),mc,PlottingSetup::luminosity));
|
187 |
fronga |
1.22 |
mcMllOscon= new THStack(allsamples.DrawStack("mcMllOscon","mll",nbins,xmin,xmax,"m_{ll} [GeV]","events",TCut(cutOSOF&&cut&&nJetsControl),mc,PlottingSetup::luminosity));
|
188 |
fronga |
1.8 |
|
189 |
fronga |
1.7 |
}
|
190 |
fronga |
1.8 |
|
191 |
buchmann |
1.1 |
mllOsig->SetLineColor(kRed);
|
192 |
|
|
mllOscon->SetLineColor(kRed);
|
193 |
|
|
|
194 |
buchmann |
1.28 |
TH1F *zlineshape = allsamples.Draw("zlineshape","mll",nbins,xmin,xmax,"m_{ll} (GeV)","events",cutOSSF&&TCut("pfJetGoodNum40==2")&&cut,data,PlottingSetup::luminosity);
|
195 |
|
|
TH1F *Ozlineshape = allsamples.Draw("Ozlineshape","mll",nbins,xmin,xmax,"m_{ll} (GeV)","events",cutOSOF&&TCut("pfJetGoodNum40==2")&&cut,data,PlottingSetup::luminosity);
|
196 |
|
|
zlineshape->Add(Ozlineshape,-1);
|
197 |
buchmann |
1.13 |
TH1F *zlineshapeControl = (TH1F*)zlineshape->Clone("zlineshapeControl");
|
198 |
buchmann |
1.21 |
// TH1F *zlineshapeFINE = allsamples.Draw("zlineshapeFINE","mll",50*nbins,xmin,xmax,"m_{ll} (GeV)","events",cutOSSF&&TCut("pfJetGoodNum40==1")&&cut,data,PlottingSetup::luminosity);
|
199 |
|
|
//
|
200 |
|
|
// float scalefactor = Get_Met_Z_Prediction(nJetsSignal,cutat, data, false) / (zlineshapeFINE->Integral(zlineshapeFINE->FindBin(91.1-20),zlineshapeFINE->FindBin(91.1+20)));
|
201 |
|
|
// float scalefactor_Control = Get_Met_Z_Prediction(nJetsControl,cutat, data, false) / (zlineshapeFINE->Integral(zlineshapeFINE->FindBin(91.1-20),zlineshapeFINE->FindBin(91.1+20)));
|
202 |
|
|
// delete zlineshapeFINE;
|
203 |
|
|
|
204 |
|
|
|
205 |
buchmann |
1.30 |
|
206 |
|
|
|
207 |
buchmann |
1.21 |
Int_t scaleBinLow = mllsig->FindBin(86);
|
208 |
|
|
Int_t scaleBinHigh = mllsig->FindBin(94);
|
209 |
|
|
float scalefactor = (mllsig->Integral(scaleBinLow,scaleBinHigh)-mllOsig->Integral(scaleBinLow,scaleBinHigh));
|
210 |
|
|
scalefactor /= zlineshape->Integral(scaleBinLow,scaleBinHigh);
|
211 |
buchmann |
1.30 |
|
212 |
buchmann |
1.21 |
float scalefactor_Control = (mllscon->Integral(scaleBinLow,scaleBinHigh)-mllOscon->Integral(scaleBinLow,scaleBinHigh));
|
213 |
|
|
scalefactor_Control /= zlineshapeControl->Integral(scaleBinLow,scaleBinHigh);
|
214 |
|
|
|
215 |
|
|
cout << "Bins for scaling : " << scaleBinLow << " : " << scaleBinHigh << endl;
|
216 |
buchmann |
1.30 |
|
217 |
|
|
if(UseSpecialZprediction) {
|
218 |
buchmann |
1.33 |
scaleBinLow = mllsig->FindBin(81);
|
219 |
|
|
scaleBinHigh = mllsig->FindBin(101);
|
220 |
buchmann |
1.30 |
scalefactor = MetPlotsSpace::Zestimate__data/ (zlineshape->Integral(scaleBinLow,scaleBinHigh));
|
221 |
|
|
cout << "Dividing: " << MetPlotsSpace::Zestimate__data << " by " << (zlineshape->Integral(scaleBinLow,scaleBinHigh)) << endl;
|
222 |
|
|
write_warning(__FUNCTION__,"Not using JZB prediction for control region!");
|
223 |
|
|
}
|
224 |
|
|
|
225 |
buchmann |
1.21 |
cout << "Scale factors : " << scalefactor << " : " << scalefactor_Control << endl;
|
226 |
buchmann |
1.30 |
if(UseSpecialZprediction) cout << " NOTE: Used JZB prediction for scaling! (Bins )" << scaleBinLow << " to " << scaleBinHigh << endl;
|
227 |
buchmann |
1.17 |
|
228 |
buchmann |
1.3 |
zlineshape->Scale(scalefactor);
|
229 |
buchmann |
1.30 |
|
230 |
buchmann |
1.3 |
zlineshape->SetLineColor(kBlue);
|
231 |
|
|
zlineshape->SetLineStyle(2);
|
232 |
|
|
|
233 |
buchmann |
1.30 |
if(UseSpecialZprediction) {
|
234 |
|
|
//need to update each bin with correct stat uncert
|
235 |
|
|
float relDYerr = MetPlotsSpace::Zestimate__data_stat/MetPlotsSpace::Zestimate__data;
|
236 |
|
|
for(int iz=1;iz<=zlineshape->GetNbinsX();iz++) {
|
237 |
|
|
float bincontent=zlineshape->GetBinContent(iz);
|
238 |
|
|
float binerror=zlineshape->GetBinError(iz);
|
239 |
|
|
float finalerr=0;
|
240 |
|
|
if(bincontent>0) finalerr+= (binerror/bincontent) * (binerror/bincontent);
|
241 |
|
|
if(MetPlotsSpace::Zestimate__data>0) finalerr+= relDYerr*relDYerr;
|
242 |
|
|
finalerr=bincontent * TMath::Sqrt(finalerr);
|
243 |
|
|
zlineshape->SetBinError(iz,finalerr);
|
244 |
|
|
}
|
245 |
|
|
}
|
246 |
|
|
|
247 |
buchmann |
1.13 |
zlineshapeControl->Scale(scalefactor_Control);
|
248 |
|
|
zlineshapeControl->SetLineColor(kBlue);
|
249 |
|
|
zlineshapeControl->SetLineStyle(2);
|
250 |
|
|
|
251 |
buchmann |
1.3 |
TH1F *subtracted = (TH1F*)mllsig->Clone("subtracted");
|
252 |
buchmann |
1.13 |
TH1F *subtractedControl = (TH1F*)mllscon->Clone("subtractedControl");
|
253 |
buchmann |
1.3 |
TH1F *baseline = (TH1F*)mllOsig->Clone("baseline");
|
254 |
buchmann |
1.13 |
TH1F *baselineControl = (TH1F*)mllOscon->Clone("baselineControl");
|
255 |
buchmann |
1.3 |
for(int i=1;i<=subtracted->GetNbinsX();i++) {
|
256 |
|
|
subtracted->SetBinContent(i,mllsig->GetBinContent(i)-mllOsig->GetBinContent(i));
|
257 |
buchmann |
1.13 |
subtractedControl->SetBinContent(i,mllscon->GetBinContent(i)-mllOscon->GetBinContent(i));
|
258 |
buchmann |
1.3 |
baseline->SetBinContent(i,0);
|
259 |
buchmann |
1.13 |
baselineControl->SetBinContent(i,0);
|
260 |
buchmann |
1.3 |
}
|
261 |
|
|
|
262 |
|
|
TH1F *prediction = (TH1F*)mllOsig->Clone("prediction");
|
263 |
|
|
prediction->Add(zlineshape);
|
264 |
|
|
prediction->SetLineColor(TColor::GetColor("#CF35CA"));
|
265 |
fronga |
1.7 |
|
266 |
|
|
TH1F *control_prediction = (TH1F*)mllOscon->Clone("control_prediction");
|
267 |
|
|
control_prediction->SetLineColor(TColor::GetColor("#CF35CA"));
|
268 |
|
|
|
269 |
|
|
// FIX Y RANGE TO EASE COMPARISON
|
270 |
fronga |
1.22 |
mllsig->SetMaximum(ymax);
|
271 |
buchmann |
1.30 |
float PreviousMinimum=mllsig->GetMinimum();
|
272 |
|
|
mllsig->SetMinimum(0);
|
273 |
fronga |
1.22 |
mllsigEE->SetMaximum(ymax);
|
274 |
|
|
mllsigMM->SetMaximum(ymax);
|
275 |
|
|
mllOsig->SetMaximum(ymax);
|
276 |
|
|
mllOscon->SetMaximum(ymax);
|
277 |
|
|
subtracted->SetMaximum(60);
|
278 |
|
|
subtracted->SetMinimum(-30);
|
279 |
|
|
subtractedControl->SetMaximum(65);
|
280 |
|
|
subtractedControl->SetMinimum(-30);
|
281 |
fronga |
1.7 |
|
282 |
buchmann |
1.3 |
|
283 |
fronga |
1.7 |
// 1.- Signal region comparison
|
284 |
buchmann |
1.30 |
TBox *srbox = new TBox(20,0,70,mllsig->GetMaximum());
|
285 |
buchmann |
1.1 |
srbox->SetFillStyle(0);
|
286 |
|
|
srbox->SetLineColor(TColor::GetColor("#298A08"));
|
287 |
|
|
srbox->SetLineWidth(3);
|
288 |
buchmann |
1.23 |
|
289 |
fronga |
1.10 |
|
290 |
buchmann |
1.2 |
stringstream MetHeader;
|
291 |
fronga |
1.19 |
MetHeader << "N_{j}#geq" << snjets.str() << ", MET>" << cutat << " GeV";
|
292 |
|
|
stringstream MetHeaderCon;
|
293 |
fronga |
1.22 |
MetHeaderCon << "N_{j}=" << njets-1 << ", 100<MET<150 GeV";
|
294 |
fronga |
1.10 |
stringstream saveasSig;
|
295 |
|
|
saveasSig << "MetPlots/mll_sig" << cutat << "__" << name;
|
296 |
|
|
|
297 |
|
|
TLegend* leg;
|
298 |
|
|
if ( !doMC ) {
|
299 |
|
|
tcan->cd();
|
300 |
|
|
//mllsig->GetYaxis()->SetRangeUser(0,mllsig->GetMaximum()*1.2);
|
301 |
|
|
mllsig->Draw();
|
302 |
|
|
TGraphErrors *stat3j = MakeErrorGraph(prediction);
|
303 |
|
|
stat3j->Draw("2,same");
|
304 |
|
|
mllOsig->Draw("histo,same");
|
305 |
|
|
zlineshape->Draw("histo,same");
|
306 |
|
|
prediction->Draw("histo,same");
|
307 |
|
|
mllsig->Draw("same");
|
308 |
|
|
DrawPrelim();
|
309 |
|
|
leg = make_legend();
|
310 |
fronga |
1.19 |
leg->SetX1(0.52);
|
311 |
|
|
leg->SetHeader(MetHeader.str().c_str());
|
312 |
fronga |
1.10 |
leg->AddEntry(mllsig,"Data","PL");
|
313 |
|
|
leg->AddEntry(prediction,"All bg prediction","L");
|
314 |
fronga |
1.7 |
leg->AddEntry(mllOsig,"bg without Z","L");
|
315 |
buchmann |
1.30 |
if(!UseSpecialZprediction) leg->AddEntry(zlineshape,"Z lineshape","L");
|
316 |
|
|
else leg->AddEntry(zlineshape,"bg with Z (JZB)","L");
|
317 |
fronga |
1.7 |
leg->AddEntry(stat3j,"stat. uncert.","F");
|
318 |
fronga |
1.10 |
leg->AddEntry(srbox,"SR","F");
|
319 |
|
|
leg->Draw();
|
320 |
|
|
srbox->Draw();
|
321 |
|
|
CompleteSave(tcan,saveasSig.str());
|
322 |
|
|
} else {
|
323 |
fronga |
1.19 |
|
324 |
fronga |
1.10 |
TPad* rcan = new TPad("rcan","rcan",0,0,1,1);
|
325 |
|
|
rcan->cd();
|
326 |
|
|
mllsig->Draw();
|
327 |
|
|
mcMllsig->Draw("same");
|
328 |
|
|
prediction->Draw("histo,same");
|
329 |
|
|
mllsig->Draw("same");
|
330 |
|
|
DrawPrelim();
|
331 |
|
|
leg = allsamples.allbglegend();
|
332 |
fronga |
1.19 |
leg->SetHeader(MetHeader.str().c_str());
|
333 |
|
|
leg->SetX1(0.52);
|
334 |
fronga |
1.10 |
leg->AddEntry(prediction,"All bg prediction","L");
|
335 |
|
|
leg->AddEntry(srbox,"SR","F");
|
336 |
|
|
leg->Draw();
|
337 |
|
|
srbox->Draw();
|
338 |
|
|
save_with_ratio( mllsig, *mcMllsig, rcan, saveasSig.str() );
|
339 |
buchmann |
1.30 |
|
340 |
|
|
ExtractScaleFactor(mllsig,mllOsig,mcMllsig,mcMllOsig,prediction,leg,saveasSig.str(),srbox);
|
341 |
fronga |
1.7 |
}
|
342 |
buchmann |
1.1 |
|
343 |
fronga |
1.8 |
// 1b. MC: split ee and mumu
|
344 |
|
|
if ( doMC ) {
|
345 |
fronga |
1.10 |
TPad* rcan = new TPad("rcan","rcan",0,0,1,1);
|
346 |
|
|
rcan->cd();
|
347 |
fronga |
1.8 |
mllsigEE->Draw();
|
348 |
|
|
mcMllsigEE->Draw("same");
|
349 |
|
|
mllsigEE->Draw("same");
|
350 |
|
|
DrawPrelim();
|
351 |
|
|
leg->Draw();
|
352 |
|
|
srbox->Draw();
|
353 |
fronga |
1.10 |
save_with_ratio( mllsigEE, *mcMllsigEE,rcan->cd(),saveasSig.str()+"_ee" );
|
354 |
fronga |
1.8 |
|
355 |
fronga |
1.10 |
rcan = new TPad("rcan","rcan",0,0,1,1);
|
356 |
|
|
rcan->cd();
|
357 |
fronga |
1.8 |
mllsigMM->Draw();
|
358 |
|
|
mcMllsigMM->Draw("same");
|
359 |
|
|
mllsigMM->Draw("same");
|
360 |
|
|
DrawPrelim();
|
361 |
|
|
leg->Draw();
|
362 |
|
|
srbox->Draw();
|
363 |
fronga |
1.10 |
save_with_ratio( mllsigMM, *mcMllsigMM,rcan,saveasSig.str()+"_mm" );
|
364 |
fronga |
1.8 |
}
|
365 |
fronga |
1.14 |
|
366 |
|
|
// 1c. MC: compare of and sf
|
367 |
|
|
if ( doMC ) {
|
368 |
|
|
TH1F* hMcMllsig = CollapseStack( *mcMllsig);
|
369 |
fronga |
1.15 |
leg = allsamples.allbglegend("");
|
370 |
fronga |
1.19 |
leg->SetHeader(MetHeader.str().c_str());
|
371 |
fronga |
1.15 |
// Change "Data" label by hand
|
372 |
|
|
((TLegendEntry*)leg->GetListOfPrimitives()->At(0))->SetLabel("Same-flavor (MC)");
|
373 |
fronga |
1.14 |
TPad* rcan = new TPad("rcan","rcan",0,0,1,1);
|
374 |
|
|
rcan->cd();
|
375 |
fronga |
1.22 |
hMcMllsig->SetMaximum(ymax);
|
376 |
fronga |
1.14 |
hMcMllsig->Draw("E");
|
377 |
|
|
mcMllOsig->Draw("same,hist");
|
378 |
|
|
hMcMllsig->Draw("same,E");
|
379 |
|
|
DrawMCPrelim();
|
380 |
fronga |
1.19 |
leg->SetX1(0.52);
|
381 |
fronga |
1.14 |
leg->AddEntry(srbox,"SR","F");
|
382 |
|
|
leg->Draw();
|
383 |
|
|
srbox->Draw();
|
384 |
|
|
save_with_ratio( hMcMllsig, *mcMllOsig, rcan, saveasSig.str()+"_mconly");
|
385 |
|
|
|
386 |
|
|
}
|
387 |
buchmann |
1.1 |
|
388 |
fronga |
1.7 |
// 2.- Signal region comparison - LOG scale
|
389 |
fronga |
1.10 |
if ( !doMC ) {
|
390 |
|
|
tcan->cd();
|
391 |
|
|
mllsig->SetMinimum(0.2); // FIX Y RANGE TO EASE COMPARISON
|
392 |
|
|
//mllsig->SetMaximum(mllsig->GetMaximum()*4.0);
|
393 |
|
|
srbox->SetY2(mllsig->GetMaximum());
|
394 |
|
|
tcan->SetLogy(1);
|
395 |
|
|
stringstream saveasSig2;
|
396 |
|
|
saveasSig2 << "MetPlots/mll_sig_ZLINESHAPE_" << cutat << "__" << name;
|
397 |
|
|
|
398 |
|
|
CompleteSave(tcan,saveasSig2.str());
|
399 |
|
|
tcan->SetLogy(0);
|
400 |
|
|
}
|
401 |
buchmann |
1.1 |
|
402 |
fronga |
1.7 |
|
403 |
|
|
// 3.- Signal region, background subtracted
|
404 |
fronga |
1.8 |
if ( !doMC ) {
|
405 |
fronga |
1.10 |
tcan->cd();
|
406 |
buchmann |
1.13 |
for(int i=1;i<=subtracted->GetNbinsX();i++) {
|
407 |
fronga |
1.8 |
subtracted->SetBinContent(i,subtracted->GetBinContent(i)-zlineshape->GetBinContent(i));
|
408 |
buchmann |
1.13 |
subtractedControl->SetBinContent(i,subtractedControl->GetBinContent(i)-zlineshapeControl->GetBinContent(i));
|
409 |
fronga |
1.8 |
}
|
410 |
buchmann |
1.3 |
|
411 |
fronga |
1.8 |
TGraphErrors *subtrerr = MakeErrorGraph(baseline);
|
412 |
|
|
subtracted->Draw();
|
413 |
|
|
subtrerr->Draw("2,same");
|
414 |
|
|
subtracted->Draw("same");
|
415 |
|
|
DrawPrelim();
|
416 |
|
|
TLegend *DiffLeg = make_legend();
|
417 |
fronga |
1.22 |
DiffLeg->SetX1(0.4);
|
418 |
fronga |
1.8 |
DiffLeg->SetFillStyle(0);
|
419 |
fronga |
1.19 |
DiffLeg->SetHeader(MetHeader.str().c_str());
|
420 |
fronga |
1.8 |
DiffLeg->AddEntry(subtracted,"observed - predicted","PL");
|
421 |
fronga |
1.19 |
DiffLeg->AddEntry(subtrerr,"stat. uncert","F");
|
422 |
fronga |
1.8 |
DiffLeg->AddEntry((TObject*)0,"","");
|
423 |
|
|
DiffLeg->AddEntry((TObject*)0,"","");
|
424 |
|
|
DiffLeg->Draw();
|
425 |
|
|
|
426 |
|
|
stringstream saveasSigSub;
|
427 |
|
|
saveasSigSub << "MetPlots/mll_sig_SUBTRACTED_" << cutat << "__" << name;
|
428 |
|
|
|
429 |
fronga |
1.22 |
//CompleteSave(tcan,saveasSigSub.str());
|
430 |
buchmann |
1.13 |
|
431 |
|
|
// 3a.- Control region, background subtracted
|
432 |
|
|
TGraphErrors *subtrerrControl = MakeErrorGraph(baselineControl);
|
433 |
|
|
subtractedControl->Draw();
|
434 |
|
|
subtrerrControl->Draw("2,same");
|
435 |
|
|
subtractedControl->Draw("same");
|
436 |
|
|
DrawPrelim();
|
437 |
fronga |
1.19 |
DiffLeg->SetHeader(MetHeaderCon.str().c_str());
|
438 |
buchmann |
1.13 |
DiffLeg->Draw();
|
439 |
|
|
saveasSigSub.str("");
|
440 |
fronga |
1.16 |
saveasSigSub << "MetPlots/mll_con_SUBTRACTED_" << cutat << "__" << name;
|
441 |
fronga |
1.22 |
//CompleteSave(tcan,saveasSigSub.str());
|
442 |
buchmann |
1.13 |
|
443 |
|
|
|
444 |
|
|
|
445 |
fronga |
1.8 |
// 4.- Signal region, background subtracted, errors added in quadrature
|
446 |
|
|
TGraphErrors *subtrerr2 = (TGraphErrors*)subtrerr->Clone("subtrerr2");
|
447 |
buchmann |
1.13 |
for(int i=1;i<=subtrerr2->GetN();i++) {
|
448 |
|
|
subtrerr2->SetPoint(i-1,subtracted->GetBinCenter(i),subtracted->GetBinContent(i));
|
449 |
|
|
subtrerr2->SetPointError(i-1,subtrerr2->GetErrorX(i),TMath::Sqrt(subtrerr2->GetErrorY(i)*subtrerr2->GetErrorY(i)+subtracted->GetBinError(i)*subtracted->GetBinError(i)));
|
450 |
fronga |
1.8 |
}
|
451 |
|
|
TLine* l = new TLine(subtracted->GetBinLowEdge(1),0.,subtracted->GetBinLowEdge(subtracted->GetNbinsX()-1)+subtracted->GetBinWidth(1),0.);
|
452 |
|
|
l->SetLineWidth(subtracted->GetLineWidth());
|
453 |
|
|
subtracted->Draw();
|
454 |
|
|
subtrerr2->Draw("2,same");
|
455 |
|
|
l->Draw("same");
|
456 |
|
|
subtracted->Draw("same");
|
457 |
|
|
DrawPrelim();
|
458 |
|
|
TLegend *DiffLeg2 = make_legend();
|
459 |
fronga |
1.22 |
DiffLeg2->SetX1(0.4);
|
460 |
fronga |
1.19 |
DiffLeg2->SetHeader(MetHeader.str().c_str());
|
461 |
fronga |
1.8 |
DiffLeg2->SetFillStyle(0);
|
462 |
|
|
DiffLeg2->AddEntry(subtracted,"observed - predicted","PL");
|
463 |
fronga |
1.19 |
DiffLeg2->AddEntry(subtrerr2,"stat. uncert","F");
|
464 |
fronga |
1.8 |
DiffLeg2->AddEntry((TObject*)0,"","");
|
465 |
|
|
DiffLeg2->AddEntry((TObject*)0,"","");
|
466 |
|
|
DiffLeg2->Draw();
|
467 |
|
|
|
468 |
|
|
stringstream saveasSigSub2;
|
469 |
|
|
saveasSigSub2 << "MetPlots/mll_sig_SUBTRACTED_quadr_" << cutat << "__" << name;
|
470 |
fronga |
1.5 |
|
471 |
fronga |
1.8 |
CompleteSave(tcan,saveasSigSub2.str());
|
472 |
fronga |
1.5 |
|
473 |
buchmann |
1.13 |
|
474 |
|
|
|
475 |
|
|
//4a.- Control region, background subtracted, errors added in quadrature
|
476 |
|
|
TGraphErrors *subtrerr2Control = (TGraphErrors*)subtrerrControl->Clone("subtrerr2Control");
|
477 |
|
|
for(int i=1;i<=subtrerr2Control->GetN();i++) {
|
478 |
|
|
subtrerr2Control->SetPoint(i-1,subtractedControl->GetBinCenter(i),subtractedControl->GetBinContent(i));
|
479 |
|
|
float width=subtrerr2Control->GetErrorX(i);
|
480 |
|
|
if(i==subtrerr2Control->GetN()) width=subtrerr2Control->GetErrorX(i-1);
|
481 |
|
|
subtrerr2Control->SetPointError(i-1,width,TMath::Sqrt(subtrerr2Control->GetErrorY(i)*subtrerr2Control->GetErrorY(i)+subtractedControl->GetBinError(i)*subtractedControl->GetBinError(i)));
|
482 |
|
|
}
|
483 |
|
|
TLine* lControl = new TLine(subtractedControl->GetBinLowEdge(1),0.,subtractedControl->GetBinLowEdge(subtractedControl->GetNbinsX()-1)+subtractedControl->GetBinWidth(1),0.);
|
484 |
|
|
lControl->SetLineWidth(subtractedControl->GetLineWidth());
|
485 |
|
|
subtractedControl->Draw();
|
486 |
|
|
subtrerr2Control->Draw("2,same");
|
487 |
|
|
lControl->Draw("same");
|
488 |
|
|
subtractedControl->Draw("same");
|
489 |
|
|
DrawPrelim();
|
490 |
fronga |
1.22 |
DiffLeg2->SetHeader(MetHeaderCon.str().c_str());
|
491 |
buchmann |
1.13 |
DiffLeg2->Draw();
|
492 |
|
|
|
493 |
|
|
saveasSigSub2.str("");
|
494 |
fronga |
1.16 |
saveasSigSub2 << "MetPlots/mll_con_SUBTRACTED_quadr_" << cutat << "__" << name;
|
495 |
buchmann |
1.13 |
|
496 |
|
|
CompleteSave(tcan,saveasSigSub2.str());
|
497 |
|
|
|
498 |
fronga |
1.8 |
delete DiffLeg;
|
499 |
|
|
delete DiffLeg2;
|
500 |
buchmann |
1.13 |
|
501 |
fronga |
1.8 |
} // !doMC
|
502 |
buchmann |
1.3 |
|
503 |
|
|
|
504 |
fronga |
1.7 |
// 5.- Control region comparison
|
505 |
fronga |
1.16 |
// scalefactor = (mllscon->Integral(scaleBinLow,scaleBinHigh)-mllOscon->Integral(scaleBinLow,scaleBinHigh));
|
506 |
|
|
// scalefactor /= zlineshape->Integral(scaleBinLow,scaleBinHigh);
|
507 |
|
|
// zlineshape->Scale(scalefactor);
|
508 |
|
|
control_prediction->Add(zlineshapeControl);
|
509 |
|
|
|
510 |
fronga |
1.22 |
control_prediction->SetMaximum(ymax); // FIX MAXIMUM TO EASE COMPARISON
|
511 |
fronga |
1.7 |
|
512 |
fronga |
1.14 |
TBox *cr1box = new TBox(xmin,0,70,control_prediction->GetMaximum());
|
513 |
buchmann |
1.1 |
cr1box->SetFillStyle(0);
|
514 |
|
|
cr1box->SetLineColor(TColor::GetColor("#0404B4"));
|
515 |
|
|
cr1box->SetLineWidth(3);
|
516 |
|
|
|
517 |
fronga |
1.14 |
TBox *cr2box = new TBox(120,0,xmax,control_prediction->GetMaximum());
|
518 |
buchmann |
1.1 |
cr2box->SetFillStyle(0);
|
519 |
|
|
cr2box->SetLineColor(TColor::GetColor("#0404B4"));
|
520 |
|
|
cr2box->SetLineWidth(3);
|
521 |
|
|
cr2box->SetLineStyle(2);
|
522 |
|
|
|
523 |
fronga |
1.10 |
stringstream saveasCon;
|
524 |
|
|
saveasCon << "MetPlots/mll_con" << cutat << "__" << name;
|
525 |
|
|
|
526 |
fronga |
1.7 |
TLegend *legc;
|
527 |
fronga |
1.10 |
//control_prediction->GetYaxis()->SetRangeUser(0,control_prediction->GetMaximum()*1.3);
|
528 |
|
|
if ( !doMC ) {
|
529 |
|
|
tcan->cd();
|
530 |
|
|
control_prediction->Draw("hist");
|
531 |
|
|
TGraphErrors *stat2j = MakeErrorGraph(control_prediction);
|
532 |
|
|
stat2j->Draw("2,same");
|
533 |
|
|
mllOscon->Draw("same,hist");
|
534 |
fronga |
1.16 |
zlineshapeControl->Draw("histo,same");
|
535 |
fronga |
1.10 |
control_prediction->Draw("histo,same");
|
536 |
|
|
mllscon->Draw("same");
|
537 |
|
|
DrawPrelim();
|
538 |
fronga |
1.7 |
legc = make_legend();
|
539 |
fronga |
1.19 |
legc->SetX1(0.52);
|
540 |
|
|
legc->SetHeader(MetHeaderCon.str().c_str());
|
541 |
fronga |
1.10 |
legc->AddEntry(mllscon,"Data","PL");
|
542 |
|
|
legc->AddEntry(control_prediction,"All bg","L");
|
543 |
fronga |
1.16 |
legc->AddEntry(zlineshapeControl,"Z lineshape","L");
|
544 |
fronga |
1.7 |
legc->AddEntry(mllOscon,"bg without Z","L");
|
545 |
|
|
legc->AddEntry(stat2j,"stat. uncert.","F");
|
546 |
fronga |
1.10 |
legc->AddEntry(cr1box,"CR1","F");
|
547 |
|
|
legc->AddEntry(cr2box,"CR2","F");
|
548 |
|
|
legc->Draw();
|
549 |
|
|
cr1box->Draw();
|
550 |
|
|
cr2box->Draw();
|
551 |
|
|
CompleteSave(tcan,saveasCon.str());
|
552 |
|
|
} else {
|
553 |
|
|
TPad* rcan = new TPad("rcan","rcan",0,0,1,1);
|
554 |
|
|
rcan->cd();
|
555 |
|
|
control_prediction->Draw("hist");
|
556 |
|
|
mcMllscon->Draw("same");
|
557 |
|
|
control_prediction->Draw("histo,same");
|
558 |
|
|
mllscon->Draw("same");
|
559 |
|
|
DrawPrelim();
|
560 |
|
|
legc = allsamples.allbglegend();
|
561 |
fronga |
1.19 |
legc->SetX1(0.52);
|
562 |
|
|
legc->SetHeader(MetHeaderCon.str().c_str());
|
563 |
fronga |
1.10 |
legc->AddEntry(control_prediction,"All bg","L");
|
564 |
|
|
legc->AddEntry(cr1box,"CR1","F");
|
565 |
|
|
legc->AddEntry(cr2box,"CR2","F");
|
566 |
|
|
legc->Draw();
|
567 |
|
|
cr1box->Draw();
|
568 |
|
|
cr2box->Draw();
|
569 |
|
|
save_with_ratio( mllscon, *mcMllscon, rcan, saveasCon.str());
|
570 |
|
|
}
|
571 |
buchmann |
1.1 |
|
572 |
fronga |
1.7 |
// 6. - Opposite-flavour data/MC comparison
|
573 |
|
|
if ( doMC ) {
|
574 |
fronga |
1.10 |
TPad* rcan = new TPad("rcan","rcan",0,0,1,1);
|
575 |
|
|
rcan->cd();
|
576 |
fronga |
1.7 |
mllOsig->SetLineColor(kBlack);
|
577 |
|
|
mllOsig->Draw();
|
578 |
|
|
mcMllOsig->Draw("same");
|
579 |
|
|
mllOsig->Draw("same");
|
580 |
|
|
TLegend *legsdm = allsamples.allbglegend();
|
581 |
fronga |
1.19 |
legsdm->SetHeader((MetHeader.str()+", OF").c_str());
|
582 |
|
|
legsdm->SetX1(0.52);
|
583 |
fronga |
1.7 |
legsdm->Draw();
|
584 |
|
|
stringstream saveasSigOF;
|
585 |
|
|
saveasSigOF << "MetPlots/mll_sig_of_" << cutat << "__" << name;
|
586 |
fronga |
1.10 |
save_with_ratio( mllOsig, *mcMllOsig, rcan, saveasSigOF.str());
|
587 |
fronga |
1.7 |
|
588 |
fronga |
1.10 |
rcan = new TPad("rcan","rcan",0,0,1,1);
|
589 |
|
|
rcan->cd();
|
590 |
fronga |
1.7 |
mllOscon->SetLineColor(kBlack);
|
591 |
|
|
mllOscon->Draw();
|
592 |
|
|
mcMllOscon->Draw("same");
|
593 |
|
|
mllOscon->Draw("same");
|
594 |
|
|
TLegend *legcdm = allsamples.allbglegend();
|
595 |
fronga |
1.19 |
legcdm->SetHeader((MetHeaderCon.str()+", OF").c_str());
|
596 |
|
|
legcdm->SetX1(0.52);
|
597 |
fronga |
1.7 |
legcdm->Draw();
|
598 |
|
|
stringstream saveasConOF;
|
599 |
|
|
saveasConOF << "MetPlots/mll_con_of_" << cutat << "__" << name;
|
600 |
fronga |
1.10 |
save_with_ratio( mllOscon, *mcMllOscon, rcan, saveasConOF.str());
|
601 |
|
|
|
602 |
fronga |
1.7 |
delete legsdm;
|
603 |
|
|
delete legcdm;
|
604 |
fronga |
1.10 |
}
|
605 |
fronga |
1.7 |
|
606 |
fronga |
1.10 |
// Memory clean-up
|
607 |
|
|
if (doMC) {
|
608 |
fronga |
1.7 |
delete mcMllscon;
|
609 |
|
|
delete mcMllOscon;
|
610 |
|
|
delete mcMllsig;
|
611 |
fronga |
1.8 |
delete mcMllsigEE;
|
612 |
|
|
delete mcMllsigMM;
|
613 |
fronga |
1.7 |
delete mcMllOsig;
|
614 |
|
|
}
|
615 |
buchmann |
1.1 |
|
616 |
|
|
delete cr1box;
|
617 |
|
|
delete cr2box;
|
618 |
|
|
delete srbox;
|
619 |
|
|
delete legc;
|
620 |
|
|
delete leg;
|
621 |
fronga |
1.7 |
|
622 |
buchmann |
1.1 |
delete mllscon;
|
623 |
|
|
delete mllOscon;
|
624 |
|
|
delete mllsig;
|
625 |
fronga |
1.8 |
delete mllsigEE;
|
626 |
|
|
delete mllsigMM;
|
627 |
buchmann |
1.1 |
delete mllOsig;
|
628 |
fronga |
1.7 |
delete zlineshape;
|
629 |
fronga |
1.16 |
delete zlineshapeControl;
|
630 |
buchmann |
1.6 |
delete tcan;
|
631 |
buchmann |
1.1 |
}
|
632 |
|
|
|
633 |
fronga |
1.14 |
void DoMetPlots(string datajzb, string mcjzb) {
|
634 |
buchmann |
1.27 |
switch_overunderflow(true);
|
635 |
fronga |
1.7 |
float metCuts[] = { 100., 150. };
|
636 |
fronga |
1.22 |
float ymax[] = { 90., 80. };
|
637 |
fronga |
1.7 |
int jetCuts[] = { 3, 2 };
|
638 |
fronga |
1.11 |
//int jetCuts[] = { 3, 3 };
|
639 |
buchmann |
1.35 |
string leptCuts[] = { "pt1>20&&pt2>20", "pt1>20&&pt2>10&&pfTightHT>100" };
|
640 |
fronga |
1.7 |
bool nomc(0),domc(1);
|
641 |
|
|
for ( int i=0; i<2; ++i ) {
|
642 |
buchmann |
1.33 |
// ProduceMetPlotsWithCut(TCut(("mll>15&&"+leptCuts[i]).c_str()),"",metCuts[i],jetCuts[i],nomc,ymax[i]);
|
643 |
fronga |
1.22 |
ProduceMetPlotsWithCut(TCut(("mll>15&&"+leptCuts[i]).c_str()),"",metCuts[i],jetCuts[i],domc,ymax[i]);
|
644 |
|
|
continue;
|
645 |
fronga |
1.19 |
// stringstream jzbcut;
|
646 |
|
|
// jzbcut << "((is_data&&("<<datajzb<<")>0)||(!is_data&&("<<mcjzb<<")>0))";
|
647 |
|
|
// ProduceMetPlotsWithCut(TCut((jzbcut.str()+"&&mll>20&&"+leptCuts[i]).c_str()),"JZBpos",metCuts[i], jetCuts[i],domc);
|
648 |
fronga |
1.11 |
//continue;
|
649 |
fronga |
1.7 |
if (!PlottingSetup::is53reco) { // Old 5_2
|
650 |
fronga |
1.22 |
ProduceMetPlotsWithCut(TCut(("mll>15&&pfJetGoodNumBtag==0&&"+leptCuts[i]).c_str()),"bTagVeto30",metCuts[i], jetCuts[i], nomc,ymax[i]);
|
651 |
|
|
ProduceMetPlotsWithCut(TCut(("mll>15&&pfJetGoodNumBtag>0&&"+leptCuts[i]).c_str()),"AtLeastOneBJet30",metCuts[i],jetCuts[i], nomc,ymax[i]);
|
652 |
|
|
ProduceMetPlotsWithCut(TCut(("mll>15&&pfJetGoodNumBtag==0&&"+leptCuts[i]).c_str()),"bTagVeto30",metCuts[i], jetCuts[i], domc,ymax[i]);
|
653 |
|
|
ProduceMetPlotsWithCut(TCut(("mll>15&&pfJetGoodNumBtag>0&&"+leptCuts[i]).c_str()),"AtLeastOneBJet30",metCuts[i],jetCuts[i], domc,ymax[i]);
|
654 |
fronga |
1.7 |
} else {
|
655 |
fronga |
1.22 |
ProduceMetPlotsWithCut(TCut(("mll>15&&pfJetGoodNumBtag30==0&&"+leptCuts[i]).c_str()),"bTagVeto30",metCuts[i], jetCuts[i],nomc,ymax[i]);
|
656 |
|
|
ProduceMetPlotsWithCut(TCut(("mll>15&&pfJetGoodNumBtag30>0&&"+leptCuts[i]).c_str()),"AtLeastOneBJet30",metCuts[i],jetCuts[i],nomc,ymax[i]);
|
657 |
|
|
ProduceMetPlotsWithCut(TCut(("mll>15&&pfJetGoodNumBtag30==0&&"+leptCuts[i]).c_str()),"bTagVeto30",metCuts[i], jetCuts[i],domc,ymax[i]);
|
658 |
|
|
ProduceMetPlotsWithCut(TCut(("mll>15&&pfJetGoodNumBtag30>0&&"+leptCuts[i]).c_str()),"AtLeastOneBJet30",metCuts[i], jetCuts[i],domc,ymax[i]);
|
659 |
fronga |
1.7 |
}
|
660 |
|
|
}
|
661 |
buchmann |
1.27 |
switch_overunderflow(false);
|
662 |
buchmann |
1.1 |
}
|
663 |
buchmann |
1.12 |
|
664 |
buchmann |
1.13 |
void compute_r_in_out() {
|
665 |
|
|
int nbins=10;
|
666 |
|
|
float xmin=10;
|
667 |
|
|
float xmax=10;
|
668 |
buchmann |
1.33 |
TCut InCut("mll>81&&mll<101&&pfJetGoodNum40>0");
|
669 |
buchmann |
1.13 |
TCut OutCut("mll>20&&mll<70&&pfJetGoodNum40>0");
|
670 |
|
|
|
671 |
|
|
TH1F *mllIN =allsamples.Draw("mllIN", "mll",nbins,xmin,xmax,"m_{ee} [GeV]", "events",TCut(cutOSSF&&InCut),mc,PlottingSetup::luminosity,allsamples.FindSample("DYJetsToLLNoTau"));
|
672 |
|
|
TH1F *mllOUT =allsamples.Draw("mllOUT","mll",nbins,xmin,xmax,"m_{ee} [GeV]", "events",TCut(cutOSSF&&OutCut),mc,PlottingSetup::luminosity,allsamples.FindSample("DYJetsToLLNoTau"));
|
673 |
|
|
|
674 |
|
|
cout << "IN: " << mllIN->Integral() << endl;
|
675 |
|
|
cout << "OUT: " << mllOUT->Integral() << endl;
|
676 |
|
|
cout << "r_oi: " <<((float) mllOUT->Integral()) / mllIN->Integral()<< endl;
|
677 |
|
|
|
678 |
|
|
delete mllIN;
|
679 |
|
|
delete mllOUT;
|
680 |
|
|
|
681 |
|
|
}
|
682 |
|
|
|
683 |
buchmann |
1.17 |
|
684 |
|
|
|
685 |
|
|
void LabelHisto(TH1 *MET_ratio,string titlex, string titley) {
|
686 |
|
|
MET_ratio->GetXaxis()->SetTitle(titlex.c_str());
|
687 |
|
|
MET_ratio->GetXaxis()->CenterTitle();
|
688 |
|
|
MET_ratio->GetYaxis()->SetTitle(titley.c_str());
|
689 |
|
|
MET_ratio->GetYaxis()->CenterTitle();
|
690 |
|
|
}
|
691 |
|
|
|
692 |
buchmann |
1.23 |
TH1F* GetPredictedAndObservedMetShapes(TCut JetCut, string sPositiveCut,string sNegativeCut,string CorrectedMet,string ObservedMet, string JZBPosvar, string JZBNegvar, float MetCut, int is_data, bool isDYonly, bool isAachen) {
|
693 |
buchmann |
1.17 |
|
694 |
|
|
//Steps:
|
695 |
|
|
// 1) Prepare samples and histo definition (with "optimal" binning for MET cut)
|
696 |
|
|
// 2) Fill MET histograms
|
697 |
|
|
// 3) Fill JZB histograms
|
698 |
|
|
// 4) Draw them and store them
|
699 |
|
|
// 5) return predicted MET distribution as is (i.e. not scaled by factor of 2!)
|
700 |
|
|
|
701 |
buchmann |
1.24 |
cout << "*************************************" << endl;
|
702 |
buchmann |
1.26 |
// cout << "** SUMMARY BEFORE STARTING DRAWING **" << endl;
|
703 |
|
|
// cout << "MET variable: " << ObservedMet << endl;
|
704 |
|
|
// cout << "Corr. MET var:" << CorrectedMet << endl;
|
705 |
|
|
// cout << "JZB pos. var: " << JZBPosvar << endl;
|
706 |
|
|
// cout << "JZB neg. var: " << JZBNegvar << endl;
|
707 |
|
|
// cout << "JZB pos cut : " << sPositiveCut << endl;
|
708 |
|
|
// cout << "JZB neg cut : " << sNegativeCut << endl;
|
709 |
buchmann |
1.30 |
|
710 |
|
|
|
711 |
|
|
if(isAachen) MetPlotsSpace::Zprediction_Uncertainty=0.3;
|
712 |
buchmann |
1.17 |
//Step 1: Prepare samples and histo definition
|
713 |
|
|
vector<int> SelectedSamples;
|
714 |
|
|
if(is_data==mc&&isDYonly) {
|
715 |
|
|
SelectedSamples=allsamples.FindSample("Z_em_DYJetsToL");
|
716 |
|
|
if(SelectedSamples.size()==0) {
|
717 |
|
|
write_error(__FUNCTION__,"Cannot continue, there seems to be no DY sample without Taus - goodbye!");
|
718 |
|
|
assert(SelectedSamples.size()>0);
|
719 |
|
|
}
|
720 |
|
|
}
|
721 |
|
|
|
722 |
|
|
float DisplayedBinSize=10.0; // this is the bin size that we use for plotting
|
723 |
|
|
|
724 |
buchmann |
1.21 |
float BinWidth=1.0;
|
725 |
buchmann |
1.17 |
float xmin=0;
|
726 |
buchmann |
1.23 |
float xmax=110;
|
727 |
|
|
if(isAachen) xmax=160;
|
728 |
buchmann |
1.21 |
if(MetCut>=xmax) xmax=MetCut+10;
|
729 |
buchmann |
1.17 |
int nbins=int((xmax-xmin)/BinWidth);
|
730 |
buchmann |
1.23 |
|
731 |
|
|
float pt2cut=20;
|
732 |
|
|
if(isAachen)pt2cut=10;
|
733 |
|
|
|
734 |
buchmann |
1.17 |
stringstream basiccut;
|
735 |
buchmann |
1.23 |
basiccut << (const char*) JetCut << "&&" << (const char*) Restrmasscut << "&&" << (const char*) leptoncut << "&&pt1>20&&pt2>" << pt2cut;
|
736 |
buchmann |
1.17 |
|
737 |
|
|
|
738 |
|
|
stringstream cMET_observed;
|
739 |
|
|
cMET_observed << "(" << basiccut.str() << "&&(" << sPositiveCut << ")&&" << (const char*) cutOSSF << ")";
|
740 |
|
|
stringstream cMET_ttbar_pred;
|
741 |
|
|
cMET_ttbar_pred << "(" << basiccut.str() << "&&(" << sPositiveCut << ")&&" << (const char*) cutOSOF << ")";
|
742 |
|
|
stringstream cMET_osof_pred;
|
743 |
|
|
cMET_osof_pred << "(" << basiccut.str() << "&&(" << sNegativeCut << ")&&" << (const char*) cutOSOF << ")";
|
744 |
|
|
stringstream cMET_ossf_pred;
|
745 |
|
|
cMET_ossf_pred << "(" << basiccut.str() << "&&(" << sNegativeCut << ")&&" << (const char*) cutOSSF << ")";
|
746 |
|
|
|
747 |
|
|
write_warning(__FUNCTION__,"Once the rush is over you might want to define the potential sidebands ... ");
|
748 |
buchmann |
1.28 |
|
749 |
buchmann |
1.17 |
//Step 2: Fill Met histograms
|
750 |
buchmann |
1.28 |
float bottommargin=gStyle->GetPadBottomMargin();
|
751 |
|
|
float canvas_height=gStyle->GetCanvasDefH();
|
752 |
|
|
float canvas_width=gStyle->GetCanvasDefW();
|
753 |
|
|
float ratiospace=0.25;// space the ratio should take up (relative to original pad)
|
754 |
|
|
|
755 |
|
|
float ratiobottommargin=0.3;
|
756 |
|
|
float ratiotopmargin=0.1;
|
757 |
|
|
|
758 |
|
|
float xstretchfactor=((1-ratiospace)*(1-gStyle->GetPadTopMargin()))/((1)*ratiospace);
|
759 |
|
|
|
760 |
|
|
TCanvas *main_canvas = new TCanvas("main_canvas","main_canvas",(Int_t)canvas_width,(Int_t)(canvas_height*(1+ratiospace)));
|
761 |
|
|
TPad *mainpad = new TPad("mainpad","mainpad",0,1-(1.0/(1+ratiospace)),1,1);//top (main) pad
|
762 |
|
|
TPad *coverpad = new TPad("coverpad","coverpad",gStyle->GetPadLeftMargin()-0.008,1-(1.0/(1+ratiospace))-0.04,1,1-(1.0/(1+ratiospace))+0.103);//pad covering up the x scale
|
763 |
|
|
TPad *bottompad = new TPad("bottompad", "Ratio Pad",0,0,1,(1-(1-bottommargin)/(1+ratiospace))-0.015); //bottom pad
|
764 |
|
|
|
765 |
|
|
main_canvas->Range(0,0,1,1);
|
766 |
|
|
main_canvas->SetBorderSize(0);
|
767 |
|
|
main_canvas->SetFrameFillColor(0);
|
768 |
|
|
|
769 |
|
|
mainpad->Draw();
|
770 |
|
|
mainpad->cd();
|
771 |
|
|
mainpad->SetLogy(1);
|
772 |
|
|
mainpad->Range(0,0,1,1);
|
773 |
|
|
mainpad->SetFillColor(kWhite);
|
774 |
|
|
mainpad->SetBorderSize(0);
|
775 |
|
|
mainpad->SetFrameFillColor(0);
|
776 |
|
|
|
777 |
|
|
|
778 |
|
|
|
779 |
|
|
|
780 |
buchmann |
1.17 |
TH1F *MET_observed = allsamples.Draw("MET_observed",ObservedMet,nbins,xmin,xmax,"MET [GeV]","events",
|
781 |
buchmann |
1.26 |
TCut(cMET_observed.str().c_str()),is_data,PlottingSetup::luminosity,SelectedSamples);
|
782 |
buchmann |
1.17 |
TH1F *MET_ossf_pred = allsamples.Draw("MET_ossf_pred",CorrectedMet,nbins,xmin,xmax,"MET [GeV]","events",
|
783 |
buchmann |
1.26 |
TCut(cMET_ossf_pred.str().c_str()),is_data,PlottingSetup::luminosity,SelectedSamples);
|
784 |
buchmann |
1.17 |
TH1F *MET_osof_pred = allsamples.Draw("MET_osof_pred",CorrectedMet,nbins,xmin,xmax,"MET [GeV]","events",
|
785 |
buchmann |
1.26 |
TCut(cMET_osof_pred.str().c_str()),is_data,PlottingSetup::luminosity,SelectedSamples);
|
786 |
buchmann |
1.17 |
TH1F *MET_ttbar_pred= allsamples.Draw("MET_ttbar_pred",ObservedMet,nbins,xmin,xmax,"MET [GeV]","events",
|
787 |
buchmann |
1.26 |
TCut(cMET_ttbar_pred.str().c_str()),is_data,PlottingSetup::luminosity,SelectedSamples);
|
788 |
buchmann |
1.17 |
|
789 |
buchmann |
1.25 |
|
790 |
|
|
if(isDYonly && is_data==mc) {
|
791 |
|
|
TH1F *MET_truth = allsamples.Draw("MET_truth",ObservedMet,1,MetCut,10000,"MET [GeV]","events",TCut(((string)"met[4]>"+any2string(MetCut)).c_str())&&cutOSSF&&TCut(basiccut.str().c_str()),is_data,PlottingSetup::luminosity,SelectedSamples);
|
792 |
|
|
write_info(__FUNCTION__,"DY Truth is : "+any2string(MET_truth->Integral()));
|
793 |
|
|
delete MET_truth;
|
794 |
|
|
}
|
795 |
|
|
|
796 |
|
|
|
797 |
buchmann |
1.17 |
TH1F *MET_predicted=(TH1F*)MET_ossf_pred->Clone("MET_predicted");
|
798 |
|
|
MET_predicted->Add(MET_osof_pred,-1);
|
799 |
|
|
MET_predicted->Add(MET_ttbar_pred);
|
800 |
|
|
MET_predicted->SetLineColor(kRed);
|
801 |
|
|
MET_observed->SetLineColor(kBlack);
|
802 |
|
|
|
803 |
|
|
TH1F *MET_Z_prediction=(TH1F*)MET_ossf_pred->Clone("MET_Z_prediction");
|
804 |
|
|
MET_Z_prediction->Add(MET_osof_pred,-1);
|
805 |
|
|
MET_Z_prediction->SetLineColor(kBlue);
|
806 |
|
|
|
807 |
|
|
LabelHisto(MET_observed,"MET (GeV)","events");
|
808 |
|
|
|
809 |
|
|
//Step 3: Fill JZB histograms
|
810 |
buchmann |
1.25 |
|
811 |
buchmann |
1.17 |
TH1F *JZB_observed = allsamples.Draw("JZB_observed",JZBPosvar,nbins,xmin,xmax,"JZB [GeV]","events",
|
812 |
|
|
TCut(cMET_observed.str().c_str()),is_data,PlottingSetup::luminosity,SelectedSamples);
|
813 |
|
|
TH1F *JZB_ossf_pred = allsamples.Draw("JZB_ossf_pred",JZBNegvar,nbins,xmin,xmax,"JZB [GeV]","events",
|
814 |
|
|
TCut(cMET_ossf_pred.str().c_str()),is_data,PlottingSetup::luminosity,SelectedSamples);
|
815 |
|
|
TH1F *JZB_osof_pred = allsamples.Draw("JZB_osof_pred",JZBNegvar,nbins,xmin,xmax,"JZB [GeV]","events",
|
816 |
|
|
TCut(cMET_osof_pred.str().c_str()),is_data,PlottingSetup::luminosity,SelectedSamples);
|
817 |
|
|
TH1F *JZB_ttbar_pred= allsamples.Draw("JZB_ttbar_pred",JZBPosvar,nbins,xmin,xmax,"JZB [GeV]","events",
|
818 |
|
|
TCut(cMET_ttbar_pred.str().c_str()),is_data,PlottingSetup::luminosity,SelectedSamples);
|
819 |
|
|
|
820 |
|
|
TH1F *JZB_predicted=(TH1F*)JZB_ossf_pred->Clone("JZB_predicted");
|
821 |
|
|
JZB_predicted->Add(JZB_osof_pred,-1);
|
822 |
|
|
JZB_predicted->Add(JZB_ttbar_pred);
|
823 |
|
|
JZB_predicted->SetLineColor(kRed);
|
824 |
|
|
JZB_observed->SetLineColor(kBlack);
|
825 |
|
|
|
826 |
|
|
TH1F *JZB_Z_prediction=(TH1F*)JZB_ossf_pred->Clone("JZB_Z_prediction");
|
827 |
|
|
JZB_Z_prediction->Add(JZB_osof_pred,-1);
|
828 |
|
|
MET_Z_prediction->SetLineColor(kBlue);
|
829 |
|
|
|
830 |
|
|
LabelHisto(JZB_observed,"JZB (GeV)","events");
|
831 |
|
|
|
832 |
|
|
// Step 4: Draw them and store them
|
833 |
|
|
|
834 |
|
|
TLegend *legend = new TLegend(0.6,0.6,0.89,0.89);
|
835 |
|
|
|
836 |
|
|
MET_ttbar_pred->SetLineColor(TColor::GetColor("#005C00"));
|
837 |
|
|
JZB_ttbar_pred->SetLineColor(TColor::GetColor("#005C00"));
|
838 |
|
|
|
839 |
|
|
legend->SetFillColor(kWhite);
|
840 |
|
|
legend->SetBorderSize(0);
|
841 |
|
|
legend->AddEntry(MET_predicted,"prediction","l");
|
842 |
|
|
legend->AddEntry(MET_observed,"observed","p");
|
843 |
|
|
legend->AddEntry(MET_Z_prediction,"predicted Z","l");
|
844 |
|
|
legend->AddEntry(MET_ttbar_pred,"OF-based prediction","l");
|
845 |
|
|
|
846 |
|
|
if(is_data==mc) legend->SetHeader("Simulation:");
|
847 |
|
|
if(is_data==mc&&isDYonly) legend->SetHeader("DY #rightarrow ee,#mu#mu only:");
|
848 |
|
|
if(is_data==data) legend->SetHeader("Data:");
|
849 |
|
|
|
850 |
|
|
stringstream SaveJZBname;
|
851 |
|
|
stringstream SaveMETname;
|
852 |
|
|
if(is_data==data) {
|
853 |
|
|
SaveJZBname << "MetPrediction/JZBdistribution_Data_METCutAt" << MetCut;
|
854 |
|
|
SaveMETname << "MetPrediction/METdistribution_Data_METCutAt" << MetCut;
|
855 |
|
|
}
|
856 |
|
|
if(is_data==mc&&!isDYonly) {
|
857 |
|
|
SaveJZBname << "MetPrediction/JZBdistribution_FullMC_METCutAt" << MetCut;
|
858 |
|
|
SaveMETname << "MetPrediction/METdistribution_FullMC_METCutAt" << MetCut;
|
859 |
|
|
}
|
860 |
|
|
if(is_data==mc&&isDYonly) {
|
861 |
|
|
SaveJZBname << "MetPrediction/JZBdistribution_DYMC_METCutAt" << MetCut;
|
862 |
|
|
SaveMETname << "MetPrediction/METdistribution_DYMC_METCutAt" << MetCut;
|
863 |
|
|
}
|
864 |
|
|
|
865 |
buchmann |
1.26 |
dout << "Shape summary (MET>50) for ";
|
866 |
|
|
if(is_data==data) cout << "data";
|
867 |
|
|
if(is_data==mc&&isDYonly) cout<< "DY ";
|
868 |
|
|
if(is_data==mc&&!isDYonly) cout << " Full MC";
|
869 |
|
|
cout << " : " << endl;
|
870 |
|
|
|
871 |
buchmann |
1.24 |
dout << " observed : " << MET_observed->Integral(MET_observed->FindBin(50),MET_observed->FindBin(xmax)) << endl;
|
872 |
|
|
dout << " predicted : " << MET_predicted->Integral(MET_predicted->FindBin(50),MET_predicted->FindBin(xmax)) << endl;
|
873 |
|
|
dout << " Z pred : " << MET_Z_prediction->Integral(MET_Z_prediction->FindBin(50),MET_Z_prediction->FindBin(xmax)) << endl;
|
874 |
|
|
dout << " ttbar : " << MET_ttbar_pred->Integral(MET_ttbar_pred->FindBin(50),MET_ttbar_pred->FindBin(xmax)) << endl;
|
875 |
|
|
|
876 |
|
|
|
877 |
buchmann |
1.17 |
TH1F *ZpredClone = (TH1F*)MET_Z_prediction->Clone("ZpredClone");
|
878 |
|
|
ZpredClone->SetLineColor(kBlue);
|
879 |
|
|
MET_observed->Rebin(int(DisplayedBinSize/BinWidth));
|
880 |
|
|
ZpredClone->Rebin(int(DisplayedBinSize/BinWidth));
|
881 |
|
|
MET_predicted->Rebin(int(DisplayedBinSize/BinWidth));
|
882 |
|
|
MET_ttbar_pred->Rebin(int(DisplayedBinSize/BinWidth));
|
883 |
|
|
|
884 |
|
|
TH1F *JZBZpredClone = (TH1F*)JZB_Z_prediction->Clone("ZpredClone");
|
885 |
|
|
JZBZpredClone->SetLineColor(kBlue);
|
886 |
|
|
JZB_observed->Rebin(int(DisplayedBinSize/BinWidth));
|
887 |
|
|
JZBZpredClone->Rebin(int(DisplayedBinSize/BinWidth));
|
888 |
|
|
JZB_predicted->Rebin(int(DisplayedBinSize/BinWidth));
|
889 |
|
|
JZB_ttbar_pred->Rebin(int(DisplayedBinSize/BinWidth));
|
890 |
|
|
|
891 |
|
|
TH1F *JZB_ratio = (TH1F*)JZB_observed->Clone("JZB_ratio");
|
892 |
|
|
JZB_ratio->Divide(JZB_predicted);
|
893 |
|
|
LabelHisto(JZB_ratio,"JZB (GeV)","obs/pred");
|
894 |
|
|
TH1F *MET_ratio = (TH1F*)MET_observed->Clone("MET_ratio");
|
895 |
|
|
MET_ratio->Divide(MET_predicted);
|
896 |
buchmann |
1.28 |
MET_observed->SetMaximum(5*MET_observed->GetMaximum());
|
897 |
|
|
JZB_observed->SetMaximum(5*JZB_observed->GetMaximum());
|
898 |
|
|
MET_observed->SetMinimum(0.5);
|
899 |
|
|
JZB_observed->SetMinimum(0.5);
|
900 |
buchmann |
1.17 |
LabelHisto(MET_ratio,"MET (GeV)","obs/pred");
|
901 |
buchmann |
1.24 |
TBox *sysenvelope = new TBox(xmin,1.0-MetPlotsSpace::Zprediction_Uncertainty,xmax,1.0+MetPlotsSpace::Zprediction_Uncertainty);
|
902 |
buchmann |
1.17 |
sysenvelope->SetFillColor(TColor::GetColor("#82FA58")); // light green
|
903 |
|
|
sysenvelope->SetLineWidth(0);
|
904 |
buchmann |
1.24 |
TBox *dsysenvelope = new TBox(xmin,1.0-2*MetPlotsSpace::Zprediction_Uncertainty,xmax,1.0+2*MetPlotsSpace::Zprediction_Uncertainty);
|
905 |
|
|
dsysenvelope->SetFillColor(TColor::GetColor("#F3F781")); // light yellow
|
906 |
|
|
dsysenvelope->SetLineWidth(0);
|
907 |
buchmann |
1.28 |
|
908 |
|
|
MET_ratio->GetYaxis()->SetNdivisions(502,false);
|
909 |
|
|
JZB_ratio->GetYaxis()->SetNdivisions(502,false);
|
910 |
|
|
|
911 |
buchmann |
1.17 |
|
912 |
|
|
MET_observed->Draw("e1");
|
913 |
|
|
MET_ttbar_pred->Draw("histo,same");
|
914 |
|
|
ZpredClone->Draw("histo,same");
|
915 |
|
|
MET_predicted->Draw("histo,same");
|
916 |
|
|
MET_observed->Draw("e1,same");
|
917 |
|
|
legend->Draw();
|
918 |
|
|
if(is_data==data) DrawPrelim();
|
919 |
|
|
else DrawMCPrelim();
|
920 |
|
|
|
921 |
buchmann |
1.28 |
mainpad->Modified();
|
922 |
|
|
main_canvas->cd();
|
923 |
|
|
coverpad->Draw();
|
924 |
|
|
coverpad->cd();
|
925 |
|
|
coverpad->Range(0,0,1,1);
|
926 |
|
|
coverpad->SetFillColor(kWhite);
|
927 |
|
|
coverpad->SetBorderSize(0);
|
928 |
|
|
coverpad->SetFrameFillColor(0);
|
929 |
|
|
coverpad->Modified();
|
930 |
|
|
main_canvas->cd();
|
931 |
|
|
bottompad->SetTopMargin(ratiotopmargin);
|
932 |
|
|
bottompad->SetBottomMargin(ratiobottommargin);
|
933 |
|
|
bottompad->Draw();
|
934 |
buchmann |
1.17 |
bottompad->cd();
|
935 |
buchmann |
1.28 |
bottompad->Range(0,0,1,1);
|
936 |
|
|
bottompad->SetFillColor(kWhite);
|
937 |
|
|
|
938 |
buchmann |
1.17 |
MET_ratio->GetYaxis()->SetRangeUser(0,2);
|
939 |
buchmann |
1.28 |
MET_ratio->GetXaxis()->SetLabelSize(xstretchfactor*MET_ratio->GetXaxis()->GetLabelSize());
|
940 |
|
|
MET_ratio->GetYaxis()->SetLabelSize(xstretchfactor*MET_ratio->GetYaxis()->GetLabelSize());
|
941 |
|
|
MET_ratio->GetXaxis()->SetTitleSize(xstretchfactor*gStyle->GetTitleSize());
|
942 |
|
|
MET_ratio->GetYaxis()->SetTitleSize(xstretchfactor*gStyle->GetTitleSize());
|
943 |
|
|
|
944 |
buchmann |
1.17 |
MET_ratio->Draw("e1");
|
945 |
buchmann |
1.28 |
// dsysenvelope->Draw();
|
946 |
buchmann |
1.17 |
sysenvelope->Draw();
|
947 |
|
|
MET_ratio->Draw("AXIS,same");
|
948 |
|
|
MET_ratio->Draw("e1,same");
|
949 |
|
|
TLine *metl = new TLine(xmin,1.0,xmax,1.0);
|
950 |
|
|
metl->SetLineColor(kBlue);
|
951 |
|
|
metl->Draw();
|
952 |
buchmann |
1.28 |
CompleteSave(main_canvas,SaveMETname.str());
|
953 |
|
|
|
954 |
|
|
mainpad->cd();
|
955 |
buchmann |
1.17 |
|
956 |
|
|
JZB_observed->Draw("e1");
|
957 |
|
|
JZB_ttbar_pred->Draw("histo,same");
|
958 |
|
|
JZBZpredClone->Draw("histo,same");
|
959 |
|
|
JZB_predicted->Draw("histo,same");
|
960 |
|
|
JZB_observed->Draw("e1,same");
|
961 |
|
|
legend->Draw();
|
962 |
|
|
if(is_data==data) DrawPrelim();
|
963 |
|
|
else DrawMCPrelim();
|
964 |
|
|
|
965 |
buchmann |
1.28 |
main_canvas->cd();
|
966 |
|
|
coverpad->Draw();
|
967 |
|
|
main_canvas->cd();
|
968 |
|
|
bottompad->Draw();
|
969 |
buchmann |
1.17 |
bottompad->cd();
|
970 |
|
|
JZB_ratio->GetYaxis()->SetRangeUser(0,2);
|
971 |
buchmann |
1.28 |
|
972 |
|
|
JZB_ratio->GetXaxis()->SetLabelSize(xstretchfactor*JZB_ratio->GetXaxis()->GetLabelSize());
|
973 |
|
|
JZB_ratio->GetYaxis()->SetLabelSize(xstretchfactor*JZB_ratio->GetYaxis()->GetLabelSize());
|
974 |
|
|
JZB_ratio->GetXaxis()->SetTitleSize(xstretchfactor*gStyle->GetTitleSize());
|
975 |
|
|
JZB_ratio->GetYaxis()->SetTitleSize(xstretchfactor*gStyle->GetTitleSize());
|
976 |
|
|
|
977 |
buchmann |
1.17 |
JZB_ratio->Draw("e1");
|
978 |
buchmann |
1.28 |
// dsysenvelope->Draw();
|
979 |
buchmann |
1.17 |
sysenvelope->Draw();
|
980 |
|
|
JZB_ratio->Draw("AXIS,same");
|
981 |
|
|
JZB_ratio->Draw("e1,same");
|
982 |
|
|
metl->Draw();
|
983 |
|
|
|
984 |
buchmann |
1.28 |
CompleteSave(main_canvas,SaveJZBname.str());
|
985 |
buchmann |
1.17 |
|
986 |
buchmann |
1.28 |
delete main_canvas;
|
987 |
buchmann |
1.17 |
delete MET_observed;
|
988 |
|
|
delete MET_predicted;
|
989 |
|
|
//do NOT delete MET_Z_prediction (it's the return value)
|
990 |
|
|
delete MET_osof_pred;
|
991 |
|
|
delete MET_ossf_pred;
|
992 |
|
|
delete MET_ttbar_pred;
|
993 |
|
|
|
994 |
|
|
delete JZB_observed;
|
995 |
|
|
delete JZB_predicted;
|
996 |
|
|
delete JZB_osof_pred;
|
997 |
|
|
delete JZB_ossf_pred;
|
998 |
|
|
delete JZB_Z_prediction;
|
999 |
|
|
delete JZB_ttbar_pred;
|
1000 |
|
|
|
1001 |
|
|
return MET_Z_prediction;
|
1002 |
|
|
}
|
1003 |
|
|
|
1004 |
buchmann |
1.25 |
float extract_correction(string jzbvariable) {
|
1005 |
|
|
int position = (int)jzbvariable.find("[1]");
|
1006 |
|
|
if(position==-1) return 0.0;
|
1007 |
|
|
string correction=jzbvariable.substr(position+3,jzbvariable.length()-position-3);
|
1008 |
|
|
position = (int)correction.find("*");
|
1009 |
|
|
if(position==-1) return 0.0;
|
1010 |
|
|
correction=correction.substr(0,position);
|
1011 |
|
|
float correctionvalue=atof(correction.c_str());
|
1012 |
|
|
assert(correctionvalue<1&&correctionvalue>0);
|
1013 |
|
|
return correctionvalue;
|
1014 |
|
|
}
|
1015 |
|
|
|
1016 |
buchmann |
1.23 |
float Get_Met_Z_Prediction(TCut JetCut, float MetCut, int isdata, bool isDYonly, bool isAachen=false) {
|
1017 |
buchmann |
1.17 |
dout << "Going to compute Z region prediction for a MET cut at " << MetCut << " GeV" << endl;
|
1018 |
|
|
// Steps:
|
1019 |
buchmann |
1.25 |
// 1) Get peak
|
1020 |
|
|
// 2) use the peak and pt correction for sample splitting
|
1021 |
|
|
// and for MET distribution shifting
|
1022 |
buchmann |
1.17 |
// 3) compute the estimate for MET>MetCut
|
1023 |
|
|
|
1024 |
|
|
// do this for data if isdata==data, otherwise for MC (full closure if isDYonly==false, otherwise use only DY sample)
|
1025 |
|
|
|
1026 |
buchmann |
1.28 |
// Step 0 : If we're dealing with DY, we need to make sure PURW is off!
|
1027 |
|
|
// string bkpcutweight = (const char*) cutWeight;
|
1028 |
|
|
// if(isdata==mc && isDYonly) cutWeight=TCut("1.0");
|
1029 |
|
|
|
1030 |
|
|
|
1031 |
buchmann |
1.25 |
// Step 1) Get peak
|
1032 |
buchmann |
1.17 |
float MCPeakNoPtCorr=0,MCPeakErrorNoPtCorr=0,DataPeakNoPtCorr=0,DataPeakErrorNoPtCorr=0,MCSigma=0,DataSigma=0;
|
1033 |
|
|
stringstream resultsNoPtCorr;
|
1034 |
|
|
stringstream NoPtCorrdatajzb;
|
1035 |
|
|
stringstream NoPtCorrmcjzb;
|
1036 |
|
|
|
1037 |
buchmann |
1.24 |
if(isAachen) {
|
1038 |
|
|
//need to make sure that none of the typical basic cuts contain problematic selections!
|
1039 |
|
|
string Sleptoncut = (const char*) leptoncut;
|
1040 |
|
|
if((int)Sleptoncut.find("pt2>20")>-1) {
|
1041 |
|
|
write_error(__FUNCTION__,"You're trying to compute the Aachen estimate but are requiring pt2>20 ... please check your config.");
|
1042 |
|
|
assert((int)Sleptoncut.find("pt2>20")==-1);
|
1043 |
|
|
}
|
1044 |
|
|
} else {
|
1045 |
|
|
string Sleptoncut = (const char*) leptoncut;
|
1046 |
|
|
if((int)Sleptoncut.find("pt2>10")>-1) {
|
1047 |
|
|
write_error(__FUNCTION__,"You're trying to compute the ETH estimate but are requiring pt2>10 ... please check your config.");
|
1048 |
|
|
assert((int)Sleptoncut.find("pt2>10")==-1);
|
1049 |
|
|
}
|
1050 |
|
|
}
|
1051 |
|
|
|
1052 |
|
|
|
1053 |
buchmann |
1.25 |
float Ptcorrection=0.0;
|
1054 |
buchmann |
1.24 |
|
1055 |
buchmann |
1.25 |
if(isdata==data) Ptcorrection=extract_correction(PlottingSetup::jzbvariabledata);
|
1056 |
|
|
else Ptcorrection=extract_correction(PlottingSetup::jzbvariablemc);
|
1057 |
buchmann |
1.24 |
|
1058 |
buchmann |
1.29 |
bool OverFlowStatus=addoverunderflowbins;
|
1059 |
|
|
|
1060 |
buchmann |
1.25 |
find_peaks(MCPeakNoPtCorr,MCPeakErrorNoPtCorr, DataPeakNoPtCorr,DataPeakErrorNoPtCorr,resultsNoPtCorr,true,NoPtCorrdatajzb,NoPtCorrmcjzb,(const char*) JetCut, true);
|
1061 |
buchmann |
1.17 |
|
1062 |
buchmann |
1.29 |
switch_overunderflow(OverFlowStatus);
|
1063 |
buchmann |
1.28 |
|
1064 |
buchmann |
1.25 |
float PeakPosition=0.0;
|
1065 |
|
|
string jzbvariable;
|
1066 |
buchmann |
1.17 |
if(isdata==data) {
|
1067 |
|
|
PeakPosition=DataPeakNoPtCorr;
|
1068 |
buchmann |
1.25 |
jzbvariable=jzbvariabledata;
|
1069 |
buchmann |
1.17 |
dout << "Found peak in data at " << DataPeakNoPtCorr << " +/- " << DataPeakErrorNoPtCorr << " ; will use this result (" << PeakPosition << ")" << endl;
|
1070 |
|
|
} else {
|
1071 |
|
|
PeakPosition=MCPeakNoPtCorr;
|
1072 |
buchmann |
1.25 |
jzbvariable=jzbvariablemc;
|
1073 |
buchmann |
1.17 |
dout << "Found peak in mc at " << MCPeakNoPtCorr << " +/- " << MCPeakErrorNoPtCorr << " ; will use this result (" << PeakPosition << ")" << endl;
|
1074 |
|
|
}
|
1075 |
|
|
|
1076 |
|
|
// Step 2: Use peak for sample splitting and MET shifting
|
1077 |
buchmann |
1.25 |
string CorrectedMet="met[4]-"+any2string(Ptcorrection)+"*pt +"+any2string(abs(1.0*(PeakPosition)));
|
1078 |
|
|
if(2*(PeakPosition)<0) CorrectedMet="met[4]-"+any2string(Ptcorrection)+"*pt -"+any2string(abs(1.0*(PeakPosition)));
|
1079 |
buchmann |
1.17 |
|
1080 |
|
|
stringstream sPositiveCut;
|
1081 |
buchmann |
1.25 |
if(PeakPosition>0) sPositiveCut << "((" << jzbvariable << "-" << PeakPosition << ")>0)";
|
1082 |
|
|
else sPositiveCut << "( " << jzbvariable << "+" << abs(PeakPosition) << ")>0)";
|
1083 |
buchmann |
1.17 |
|
1084 |
|
|
stringstream sNegativeCut;
|
1085 |
buchmann |
1.25 |
if(PeakPosition<0) sNegativeCut << "((" << jzbvariable << "+" << abs(PeakPosition) << ")<0)";
|
1086 |
|
|
else sNegativeCut << "(( " << jzbvariable << "-" << abs(PeakPosition) << ")<0)";
|
1087 |
buchmann |
1.17 |
|
1088 |
|
|
string ObservedMet="met[4]";
|
1089 |
|
|
|
1090 |
|
|
stringstream JZBPosvar;
|
1091 |
buchmann |
1.25 |
JZBPosvar<<jzbvariable;
|
1092 |
|
|
if(PeakPosition>0) JZBPosvar << "-" << PeakPosition;
|
1093 |
|
|
else JZBPosvar << "+" << abs(PeakPosition);
|
1094 |
|
|
|
1095 |
buchmann |
1.17 |
stringstream JZBNegvar;
|
1096 |
buchmann |
1.25 |
JZBNegvar<<"-(" << jzbvariable;
|
1097 |
|
|
if(PeakPosition>0) JZBNegvar << "-" << PeakPosition << ")";
|
1098 |
|
|
else JZBNegvar << "+" << abs(PeakPosition) << ")";
|
1099 |
|
|
|
1100 |
buchmann |
1.17 |
|
1101 |
|
|
// Step 3: Compute estimate
|
1102 |
buchmann |
1.23 |
TH1F *predicted = GetPredictedAndObservedMetShapes(JetCut, sPositiveCut.str(),sNegativeCut.str(),CorrectedMet,ObservedMet,JZBPosvar.str(),JZBNegvar.str(), MetCut, isdata, isDYonly, isAachen);
|
1103 |
buchmann |
1.17 |
float ZregionZestimate=0;
|
1104 |
|
|
for(int ibin=1;ibin<=(int)predicted->GetNbinsX();ibin++) {
|
1105 |
|
|
if(predicted->GetBinLowEdge(ibin)+predicted->GetBinWidth(ibin)>MetCut) {
|
1106 |
|
|
ZregionZestimate+=2*(predicted->GetBinContent(ibin));
|
1107 |
|
|
}
|
1108 |
|
|
}
|
1109 |
|
|
|
1110 |
buchmann |
1.25 |
cout << " Z region estimate in MET>" << MetCut << " for this sample: " << ZregionZestimate << endl;
|
1111 |
buchmann |
1.30 |
if(isdata==data) {
|
1112 |
|
|
MetPlotsSpace::Zestimate__data=ZregionZestimate;
|
1113 |
|
|
MetPlotsSpace::Zestimate__data_stat=2*TMath::Sqrt(ZregionZestimate/2);
|
1114 |
|
|
MetPlotsSpace::Zestimate__data_sys=ZregionZestimate*MetPlotsSpace::Zprediction_Uncertainty;
|
1115 |
|
|
}
|
1116 |
|
|
if(isdata==mc && isDYonly) {
|
1117 |
|
|
MetPlotsSpace::Zestimate__dy=ZregionZestimate;
|
1118 |
|
|
MetPlotsSpace::Zestimate__dy_stat=2*TMath::Sqrt(ZregionZestimate/2);
|
1119 |
|
|
MetPlotsSpace::Zestimate__dy_sys=ZregionZestimate*MetPlotsSpace::Zprediction_Uncertainty;
|
1120 |
|
|
}
|
1121 |
|
|
if(isdata==mc && !isDYonly) {
|
1122 |
|
|
MetPlotsSpace::Zestimate__mc=ZregionZestimate;
|
1123 |
|
|
MetPlotsSpace::Zestimate__mc_stat=2*TMath::Sqrt(ZregionZestimate/2);
|
1124 |
|
|
MetPlotsSpace::Zestimate__mc_sys=ZregionZestimate*MetPlotsSpace::Zprediction_Uncertainty;
|
1125 |
|
|
}
|
1126 |
|
|
|
1127 |
|
|
|
1128 |
buchmann |
1.25 |
|
1129 |
buchmann |
1.28 |
// if(isdata==mc && isDYonly) cutWeight=TCut(bkpcutweight.c_str());
|
1130 |
|
|
|
1131 |
buchmann |
1.17 |
return ZregionZestimate;
|
1132 |
|
|
}
|
1133 |
|
|
|
1134 |
buchmann |
1.30 |
void ExperimentalMetPrediction(bool QuickRun=false) {
|
1135 |
buchmann |
1.17 |
|
1136 |
buchmann |
1.28 |
switch_overunderflow(true);
|
1137 |
buchmann |
1.23 |
bool isAachen=false;
|
1138 |
buchmann |
1.24 |
|
1139 |
buchmann |
1.35 |
bool HighPurityMode=false; // High Purity = |mll-91|<10 GeV , else <20
|
1140 |
buchmann |
1.24 |
|
1141 |
buchmann |
1.30 |
if(QuickRun) {
|
1142 |
|
|
isAachen=false;
|
1143 |
buchmann |
1.32 |
HighPurityMode=true;
|
1144 |
buchmann |
1.30 |
}
|
1145 |
|
|
|
1146 |
buchmann |
1.24 |
string restrmasscutbkp=(const char*) PlottingSetup::Restrmasscut;
|
1147 |
|
|
|
1148 |
buchmann |
1.32 |
if(HighPurityMode) PlottingSetup::Restrmasscut=TCut("abs(mll-91)<10");
|
1149 |
|
|
else PlottingSetup::Restrmasscut= TCut("abs(mll-91)<20");
|
1150 |
buchmann |
1.24 |
|
1151 |
|
|
|
1152 |
|
|
|
1153 |
buchmann |
1.23 |
cout << "Aachen mode (20/10, 2 jets) ? " << isAachen << endl;
|
1154 |
buchmann |
1.24 |
cout << "High Purity mode? " << HighPurityMode << endl;
|
1155 |
|
|
|
1156 |
buchmann |
1.23 |
|
1157 |
|
|
if(isAachen) write_warning(__FUNCTION__,"Please don't forget to adapt the global lepton cut (to 20/10) for Aachen!");
|
1158 |
buchmann |
1.24 |
stringstream snjets;
|
1159 |
|
|
if(isAachen) snjets << 2;
|
1160 |
|
|
else snjets << 3;
|
1161 |
|
|
float maxMET=100;
|
1162 |
|
|
if(isAachen) maxMET=150;
|
1163 |
buchmann |
1.12 |
|
1164 |
buchmann |
1.17 |
TCut nJetsSignal(PlottingSetup::basicqualitycut&&("pfJetGoodNum40>="+snjets.str()).c_str());
|
1165 |
buchmann |
1.35 |
/*
|
1166 |
buchmann |
1.17 |
cout << " ***** TESTING Z PREDICTION ***** " << endl;
|
1167 |
|
|
cout << "Notation (you can copy & paste this to evaluate it further)" << endl;
|
1168 |
|
|
cout << "Cut;Data;MC;DY;" << endl;
|
1169 |
buchmann |
1.30 |
float DataEstimate = Get_Met_Z_Prediction(Restrmasscut&&nJetsSignal,maxMET, data, false, isAachen);
|
1170 |
|
|
float DYEstimate;
|
1171 |
|
|
if(!QuickRun) DYEstimate = Get_Met_Z_Prediction(Restrmasscut&&nJetsSignal,maxMET, mc, true, isAachen);
|
1172 |
|
|
float MCEstimate;
|
1173 |
|
|
if(!QuickRun) MCEstimate = Get_Met_Z_Prediction(Restrmasscut&&nJetsSignal,maxMET, mc, false, isAachen);
|
1174 |
|
|
|
1175 |
|
|
if(QuickRun) return;
|
1176 |
|
|
cout << maxMET << ";" << DataEstimate << ";" << MCEstimate << ";" << DYEstimate << endl;
|
1177 |
|
|
dout << "Found estimate in data of " << DataEstimate << endl;
|
1178 |
buchmann |
1.35 |
*/
|
1179 |
buchmann |
1.24 |
float Diff=20.0;
|
1180 |
|
|
if(HighPurityMode) Diff=10;
|
1181 |
|
|
TCut cut("mll>20&&pt1>20&&pt2>20");
|
1182 |
buchmann |
1.35 |
if (isAachen) cut = TCut("mll>20&&pt1>20&&pt2>10&&pfTightHT>100");
|
1183 |
buchmann |
1.28 |
|
1184 |
|
|
TCanvas *qcan = new TCanvas("qcan","qcan");
|
1185 |
buchmann |
1.35 |
TH1F *zlineshape = allsamples.Draw("zlineshape","mll",int((91+25-18)*5),18,91+25,"m_{ll} (GeV)","events",cutOSSF&&TCut("pfJetGoodNum40==2")&&cut,data,PlottingSetup::luminosity); // bins of 0.2 GeV
|
1186 |
|
|
TH1F *Ozlineshape = allsamples.Draw("Ozlineshape","mll",int((91+25-18)*5),18,91+25,"m_{ll} (GeV)","events",cutOSOF&&TCut("pfJetGoodNum40==2")&&cut,data,PlottingSetup::luminosity); // bins of 0.2 GeV
|
1187 |
buchmann |
1.28 |
zlineshape->Add(Ozlineshape,-1);
|
1188 |
|
|
delete qcan;
|
1189 |
buchmann |
1.24 |
float a = (zlineshape->Integral(zlineshape->FindBin(20),zlineshape->FindBin(70)));
|
1190 |
buchmann |
1.32 |
float b = (zlineshape->Integral(zlineshape->FindBin(91-Diff),zlineshape->FindBin(91+Diff)));
|
1191 |
buchmann |
1.24 |
float r = a/b;
|
1192 |
|
|
float dr= (a/b)*TMath::Sqrt(1/a+1/b);
|
1193 |
buchmann |
1.35 |
/*
|
1194 |
buchmann |
1.24 |
float SysUncertainty = TMath::Sqrt(DataEstimate*DataEstimate*dr*dr + r*r*(DataEstimate*MetPlotsSpace::Zprediction_Uncertainty*DataEstimate*MetPlotsSpace::Zprediction_Uncertainty));
|
1195 |
|
|
float StatUncertainty = TMath::Sqrt(DataEstimate);
|
1196 |
|
|
|
1197 |
|
|
cout << "Z estimate in peak : " << DataEstimate << " +/- " << DataEstimate*MetPlotsSpace::Zprediction_Uncertainty << " (sys) +/- " << TMath::Sqrt(2*DataEstimate) << " (stat) " << endl;
|
1198 |
|
|
cout << "Z ESTIMATE IN SR : " << DataEstimate*r << " +/- " << SysUncertainty << " (sys) +/- " << StatUncertainty << " (stat) " << endl;
|
1199 |
buchmann |
1.35 |
// cout << endl;*/
|
1200 |
buchmann |
1.24 |
cout << "r = " << r << " +/- " << dr << endl;
|
1201 |
|
|
|
1202 |
|
|
|
1203 |
|
|
|
1204 |
|
|
delete zlineshape;
|
1205 |
|
|
|
1206 |
|
|
PlottingSetup::Restrmasscut=TCut(restrmasscutbkp.c_str());
|
1207 |
buchmann |
1.28 |
switch_overunderflow(false);
|
1208 |
buchmann |
1.24 |
|
1209 |
buchmann |
1.12 |
}
|
1210 |
buchmann |
1.17 |
|