1 |
#include <iostream>
|
2 |
#include <sstream>
|
3 |
#include <iomanip>
|
4 |
#include <TFile.h>
|
5 |
#include <TTree.h>
|
6 |
#include <TH1.h>
|
7 |
#include <TF1.h>
|
8 |
#include <TMath.h>
|
9 |
#include <TCanvas.h>
|
10 |
#include <vector>
|
11 |
#include <TROOT.h>
|
12 |
#include <TLine.h>
|
13 |
#include <TLegend.h>
|
14 |
#include <TLatex.h>
|
15 |
#include <TRandom.h>
|
16 |
#ifndef GeneralToolBoxLoaded
|
17 |
#include "GeneralToolBox.C"
|
18 |
#endif
|
19 |
#ifndef Verbosity
|
20 |
#define Verbosity 0
|
21 |
#endif
|
22 |
|
23 |
using namespace std;
|
24 |
|
25 |
Double_t LogParabola(Double_t *x,Double_t *par)
|
26 |
{
|
27 |
return par[0]*TMath::Exp(-par[1]*(x[0]-par[2])*(x[0]-par[2])); // we're adding a "logarithmic parabola" :-)
|
28 |
//note: the abs() around the first parameter ensures that, when fitting, no negative values are chosen.
|
29 |
}
|
30 |
|
31 |
Double_t LogParabolaP(Double_t *x,Double_t *par)
|
32 |
{
|
33 |
float fitval = par[0]*TMath::Exp(-par[1]*(x[0]-par[2])*(x[0]-par[2])); // we're adding a "logarithmic parabola" :-)
|
34 |
fitval+= statErrorP(fitval);
|
35 |
return fitval;
|
36 |
}
|
37 |
|
38 |
Double_t LogParabolaN(Double_t *x,Double_t *par)
|
39 |
{
|
40 |
float fitval = par[0]*TMath::Exp(-par[1]*(x[0]-par[2])*(x[0]-par[2])); // we're adding a "logarithmic parabola" :-)
|
41 |
fitval-= statErrorN(fitval);
|
42 |
return fitval;
|
43 |
}
|
44 |
|
45 |
|
46 |
|
47 |
bool doreject=false;
|
48 |
float low_reject=-10;
|
49 |
float hi_reject=10;
|
50 |
|
51 |
bool dofixed=true;
|
52 |
|
53 |
|
54 |
bool addparabola=true;
|
55 |
float parabola_height=0;
|
56 |
float parabola_inclination=0;
|
57 |
float parabola_pointzero=0;
|
58 |
|
59 |
float find_KM_peak(TH1F *all, TH1F *ttbar, float minfit, float maxfit, bool is_data, float &error,float &Sigma,float& Serror);
|
60 |
float find_Gauss_peak(TH1F *all, TH1F *ttbar, float minfit, float maxfit, bool is_data, float &error,float &Sigma,float& Serror, int numsig);
|
61 |
|
62 |
Double_t CrystalBallPlusLogParabola(double *x, double *par)
|
63 |
{
|
64 |
//parameters:
|
65 |
//N: the way we scale the function
|
66 |
//alpha (where the function changes)
|
67 |
//n: exponent of the power expression in the left area
|
68 |
//xbar: peak of the gaussian part (RHS)
|
69 |
//sigma: width of the gaussian part (RHS)
|
70 |
float N=par[0];
|
71 |
float alpha=par[3]; //verified (orig: 1)
|
72 |
float n=par[4]; // verified (orig: 2)
|
73 |
float xbar=par[1]; //verified (orig: 3)
|
74 |
float sigma=par[2]; //verified (orig: 4)
|
75 |
float altX=-x[0];
|
76 |
float result=-999;
|
77 |
if(((altX-xbar)/sigma>-alpha)){
|
78 |
result=N*TMath::Exp(-(altX-xbar)*(altX-xbar)/(2*sigma*sigma));
|
79 |
}
|
80 |
else
|
81 |
{
|
82 |
//if we are outside the central (Gaussian) area things become more difficult ...
|
83 |
float A=TMath::Power(n/TMath::Abs(alpha),n)*TMath::Exp(-alpha*alpha/2);
|
84 |
float B=n/TMath::Abs(alpha) - TMath::Abs(alpha);
|
85 |
if((altX-xbar)/sigma<=-alpha) result=N*A*TMath::Power((B-((altX-xbar)/sigma)),-n);
|
86 |
if((altX-xbar)/sigma>=alpha) result=N*A*TMath::Power((B+((altX-xbar)/sigma)),-n);
|
87 |
}
|
88 |
|
89 |
result+=par[5]*TMath::Exp(-par[6]*(x[0]-par[7])*(x[0]-par[7])); // we're adding a "logarithmic parabola" :-)
|
90 |
if(par[5]<0) return -999; // there can be no negative ttbar contribution, so just return a value which is going to be a horrible fit.
|
91 |
if(par[6]<0) return -999; // the parabola needs to close (i.e. tend to negative values for large |jzb|, not to large positive values)
|
92 |
|
93 |
return result;
|
94 |
}
|
95 |
|
96 |
Double_t CrystalBallPlusLogParabolaP(double *x, double *par)
|
97 |
{
|
98 |
float parameter_bkp=par[5];
|
99 |
par[5]=0;
|
100 |
float zjetsresult=CrystalBallPlusLogParabola(x,par);
|
101 |
par[5]=parameter_bkp;
|
102 |
parameter_bkp=par[0];
|
103 |
par[0]=0;
|
104 |
float ttbarresult=CrystalBallPlusLogParabola(x,par);
|
105 |
par[0]=parameter_bkp;
|
106 |
return zjetsresult+ttbarresult+TMath::Sqrt(zjetsresult+(1.0/3.0)*ttbarresult);
|
107 |
}
|
108 |
|
109 |
Double_t CrystalBallPlusLogParabolaN(double *x, double *par)
|
110 |
{
|
111 |
float parameter_bkp=par[5];
|
112 |
par[5]=0;
|
113 |
float zjetsresult=CrystalBallPlusLogParabola(x,par);
|
114 |
par[5]=parameter_bkp;
|
115 |
parameter_bkp=par[0];
|
116 |
par[0]=0;
|
117 |
float ttbarresult=CrystalBallPlusLogParabola(x,par);
|
118 |
par[0]=parameter_bkp;
|
119 |
return zjetsresult+ttbarresult-TMath::Sqrt(zjetsresult+(1.0/3.0)*ttbarresult);
|
120 |
}
|
121 |
|
122 |
Double_t KrystalMallLogPar(double *x, double *par)
|
123 |
{
|
124 |
//parameters:
|
125 |
//N: the way we scale the function
|
126 |
//alpha (where the function changes)
|
127 |
//n: exponent of the power expression in the left area
|
128 |
//xbar: peak of the gaussian part (RHS)
|
129 |
//sigma: width of the gaussian part (RHS)
|
130 |
float N=par[0];
|
131 |
float alpha=par[1];
|
132 |
float n=par[2];
|
133 |
float xbar=par[3];
|
134 |
float sigma=par[4];
|
135 |
float altX=x[0];
|
136 |
float result=-999;
|
137 |
if(doreject&&x[0]>low_reject&&x[0]<hi_reject)
|
138 |
{
|
139 |
TF1::RejectPoint();
|
140 |
return 0;
|
141 |
}
|
142 |
if(((altX-xbar)/sigma>-alpha)&&((altX-xbar)/sigma<alpha)){
|
143 |
result=N*TMath::Exp(-(altX-xbar)*(altX-xbar)/(2*sigma*sigma));
|
144 |
}
|
145 |
else
|
146 |
{
|
147 |
//if we are outside the central (Gaussian) area things become more difficult ...
|
148 |
float A=TMath::Power(n/TMath::Abs(alpha),n)*TMath::Exp(-alpha*alpha/2);
|
149 |
float B=n/TMath::Abs(alpha) - TMath::Abs(alpha);
|
150 |
if((altX-xbar)/sigma<=-alpha) result=N*A*TMath::Power((B-((altX-xbar)/sigma)),-n);
|
151 |
if((altX-xbar)/sigma>=alpha) result=N*A*TMath::Power((B+((altX-xbar)/sigma)),-n);
|
152 |
}
|
153 |
|
154 |
if(addparabola) {
|
155 |
if(dofixed) {
|
156 |
result+=parabola_height*TMath::Exp(-parabola_inclination*(x[0]-parabola_pointzero)*(x[0]-parabola_pointzero)); // we're adding a "logarithmic parabola" :-)
|
157 |
}
|
158 |
else {
|
159 |
result+=par[5]*TMath::Exp(-par[6]*(x[0]-par[7])*(x[0]-par[7])); // we're adding a "logarithmic parabola" :-)
|
160 |
if(par[5]<0) return -999; // there can be no negative ttbar contribution, so just return a value which is going to be a horrible fit.
|
161 |
if(par[6]<0) return -999; // the parabola needs to close (i.e. tend to negative values for large |jzb|, not to large positive values)
|
162 |
}
|
163 |
}
|
164 |
return result;
|
165 |
}
|
166 |
|
167 |
|
168 |
void do_ttbar_fit(TH1F *ttbar,TF1 *logpar, TF1 *KM)
|
169 |
{
|
170 |
logpar->SetParameters(10,2,3);
|
171 |
ttbar->Fit(logpar,"NQ");
|
172 |
ttbar->Fit(logpar,"NQ");
|
173 |
ttbar->Fit(logpar,"NQ");
|
174 |
ttbar->Fit(logpar,"NQ");
|
175 |
ttbar->SetStats(0);
|
176 |
parabola_height=logpar->GetParameter(0);
|
177 |
parabola_inclination=logpar->GetParameter(1);
|
178 |
parabola_pointzero=logpar->GetParameter(2);
|
179 |
}
|
180 |
|
181 |
void draw_complete_fit(TH1F *all, TH1F *ttbar, float minfit, float maxfit, bool is_data, TF1 *KM)
|
182 |
{
|
183 |
TCanvas *fitsummary;
|
184 |
if(is_data) {
|
185 |
fitsummary= new TCanvas("fitsummary","Fit Summary",1000,500);
|
186 |
fitsummary->Divide(2,1);
|
187 |
}
|
188 |
else {
|
189 |
fitsummary= new TCanvas("fitsummary","Fit Summary",1200,400);
|
190 |
fitsummary->Divide(3,1);
|
191 |
}
|
192 |
TF1 *logpar = new TF1("logpar",LogParabola,minfit,maxfit,3);
|
193 |
|
194 |
logpar->SetParameters(KM->GetParameter(5),KM->GetParameter(6),KM->GetParameter(7));
|
195 |
logpar->SetLineColor(kOrange);
|
196 |
logpar->SetLineStyle(2);
|
197 |
if(!is_data)
|
198 |
{
|
199 |
ttbar->GetXaxis()->SetTitle("JZB (GeV/c)");
|
200 |
ttbar->GetYaxis()->SetTitle("events");
|
201 |
ttbar->GetXaxis()->CenterTitle();
|
202 |
ttbar->GetYaxis()->CenterTitle();
|
203 |
ttbar->SetLineColor(kRed);
|
204 |
fitsummary->cd(1);
|
205 |
ttbar->Draw();
|
206 |
fitsummary->cd(1);
|
207 |
logpar->Draw("same");
|
208 |
TLegend *leg = new TLegend(0.3,0.25,0.65,0.4);
|
209 |
leg->AddEntry(ttbar,"t#bar{t} (mc)","l");
|
210 |
leg->AddEntry(logpar,"Fit with Log. Parabola","l");
|
211 |
leg->SetLineColor(kWhite);
|
212 |
leg->SetFillColor(kWhite);
|
213 |
leg->Draw();
|
214 |
TText *title1=write_title("t#bar{t} Distribution and Fit");
|
215 |
title1->Draw();
|
216 |
}
|
217 |
fitsummary->cd(2-int(is_data));
|
218 |
fitsummary->cd(2-int(is_data))->SetLogy(1);
|
219 |
all->GetYaxis()->SetTitle("events");
|
220 |
all->GetYaxis()->CenterTitle();
|
221 |
all->Draw();
|
222 |
ttbar->SetLineColor(kRed);
|
223 |
if(!is_data) ttbar->Draw("same");
|
224 |
KM->SetLineWidth(1);
|
225 |
KM->Draw("same");
|
226 |
logpar->SetLineWidth(1);
|
227 |
logpar->Draw("same");
|
228 |
if(!is_data)ttbar->Draw("same");
|
229 |
TLegend *leg2 = new TLegend(0.65,0.65,0.89,0.89);
|
230 |
if(is_data) leg2->AddEntry(all,"Data","l");
|
231 |
else leg2->AddEntry(all,"Stacked MC","l");
|
232 |
leg2->AddEntry(KM,"Fitted KM Function","l");
|
233 |
if(!is_data) leg2->AddEntry(ttbar,"t#bar{t} MC","l");
|
234 |
leg2->AddEntry(logpar,"t#bar{t} (Fit)","l");
|
235 |
leg2->SetFillColor(kWhite);
|
236 |
leg2->SetLineColor(kWhite);
|
237 |
leg2->Draw();
|
238 |
TText *title2=write_title("Distribution and Fits (log.)");
|
239 |
title2->Draw();
|
240 |
fitsummary->cd(3-is_data);
|
241 |
all->Draw();
|
242 |
KM->Draw("same");
|
243 |
float peaklocation=KM->GetParameter(3);
|
244 |
TLine *muline = new TLine(peaklocation,0,peaklocation,all->GetMaximum());
|
245 |
muline->SetLineColor(kBlue);
|
246 |
muline->SetLineStyle(2);
|
247 |
muline->Draw();
|
248 |
TLegend *leg = new TLegend(0.75,0.75,0.89,0.89);
|
249 |
if(is_data) leg2->AddEntry(all,"Data","l");
|
250 |
else leg->AddEntry(all,"Stacked MC","l");
|
251 |
leg->AddEntry(KM,"Fitted KM Function","l");
|
252 |
stringstream mulinelabel;
|
253 |
mulinelabel<<"Peak position at #mu="<<peaklocation;
|
254 |
leg->AddEntry(muline,mulinelabel.str().c_str(),"l");
|
255 |
leg->SetLineColor(kWhite);
|
256 |
leg->SetFillColor(kWhite);
|
257 |
leg->Draw();
|
258 |
mulinelabel<<"+/-"<<TMath::Abs(KM->GetParError(3));
|
259 |
TText *title3=write_title("Distribution and Fits");
|
260 |
title3->Draw();
|
261 |
TText *titlel=write_title_low(mulinelabel.str().c_str());
|
262 |
titlel->Draw();
|
263 |
|
264 |
stringstream printtop;
|
265 |
printtop << "#mu="<<std::setprecision(3)<<KM->GetParameter(3)<<"+/-"<<std::setprecision(3)<<KM->GetParError(3);
|
266 |
TLatex *toptext = new TLatex(0,all->GetMaximum()*1.3,printtop.str().c_str());
|
267 |
toptext->SetTextAlign(22);
|
268 |
// toptext->Draw();
|
269 |
|
270 |
doreject=false;
|
271 |
TF1 *wholefitfunc=(TF1*)KM->Clone();
|
272 |
doreject=true;
|
273 |
wholefitfunc->SetLineColor(kRed);
|
274 |
wholefitfunc->SetLineStyle(2);
|
275 |
wholefitfunc->Draw("same");
|
276 |
|
277 |
fitsummary->cd(2-is_data);
|
278 |
wholefitfunc->Draw("same");
|
279 |
|
280 |
if(is_data) CompleteSave(fitsummary, "fit/Fit_Summary_Data");
|
281 |
else CompleteSave(fitsummary,"fit/Fit_Summary_MC");
|
282 |
|
283 |
}
|
284 |
|
285 |
float Kostas_algorithm(TH1F *hist, float &error, float &sigma, float& serror, TF1* fitFunc, float lowlimit, float highlimit,bool is_data, string saveas)
|
286 |
{
|
287 |
float mean = hist->GetBinCenter( hist->GetMaximumBin());
|
288 |
float rms = hist->GetRMS();
|
289 |
mean = hist->GetBinCenter( hist->GetMaximumBin());
|
290 |
|
291 |
fitFunc->SetParameter(1,mean);
|
292 |
|
293 |
hist->Fit(fitFunc,"QLL0","",mean-10,mean+10);
|
294 |
|
295 |
mean=fitFunc->GetParameter(1);
|
296 |
rms=fitFunc->GetParameter(2);
|
297 |
error=fitFunc->GetParError(1);
|
298 |
|
299 |
bool printOut = false; // print the peak estimate in the i-th iteration
|
300 |
|
301 |
// --- perform iterations
|
302 |
int numIterations=5;
|
303 |
|
304 |
float rmsMultiplier=1.0;
|
305 |
if(PlottingSetup::DoBTag) rmsMultiplier=2.0;
|
306 |
|
307 |
if(printOut) dout << " ( ";
|
308 |
for(int i=1;i<numIterations+1;i++) //--- modify the number of iterations until peak is stable
|
309 |
{
|
310 |
hist->Fit(fitFunc,"QLLN","same",mean - rmsMultiplier*lowlimit*rms, mean + rmsMultiplier*highlimit*rms); // fit -2 +1 sigma from previous iteration
|
311 |
mean=fitFunc->GetParameter(1);
|
312 |
fitFunc->SetRange(mean - rmsMultiplier*lowlimit*rms, mean + rmsMultiplier*highlimit*rms);
|
313 |
if(printOut) dout << mean << ",";
|
314 |
}
|
315 |
if(printOut) dout << " ) ";
|
316 |
if(printOut) dout << endl;
|
317 |
mean=fitFunc->GetParameter(1);
|
318 |
sigma=fitFunc->GetParameter(2);
|
319 |
error=1.0*fitFunc->GetParError(1);
|
320 |
serror=fitFunc->GetParError(2);
|
321 |
|
322 |
// below this point we're merely doing cosmetics :-)
|
323 |
TCanvas *peakfitcanvas = new TCanvas("peakfitcanvas","Fitting Canvas");
|
324 |
peakfitcanvas->cd();
|
325 |
|
326 |
hist->SetMinimum(0);
|
327 |
if(is_data) hist->Draw("e1");
|
328 |
else hist->Draw("histo");
|
329 |
fitFunc->SetLineColor(kBlue);
|
330 |
fitFunc->SetLineWidth(1);
|
331 |
fitFunc->Draw("same");
|
332 |
hist->SetStats(0);
|
333 |
TLegend *leg;
|
334 |
if(is_data) {
|
335 |
leg= make_legend("Fit (Data)");
|
336 |
leg->AddEntry(hist,"Data","p");
|
337 |
}
|
338 |
else {
|
339 |
leg= make_legend("Fit (MC)");
|
340 |
leg->AddEntry(hist,"MC","l");
|
341 |
}
|
342 |
|
343 |
leg->AddEntry(fitFunc,"Fit","l");
|
344 |
leg->SetX1(0.7);
|
345 |
leg->SetY1(0.7);
|
346 |
leg->Draw();
|
347 |
|
348 |
TText *ftitle=write_text(0.20,0.86,"Fit results:");
|
349 |
ftitle->SetTextSize(0.03);
|
350 |
ftitle->SetTextAlign(11);
|
351 |
stringstream fitresult;
|
352 |
fitresult << "#mu=" << std::setprecision(4) << mean << "+/-" << std::setprecision(4) << error;
|
353 |
// TText *title1=write_text(0.20,0.96,fitresult.str().c_str());
|
354 |
TText *title1=write_text(0.20,0.82,fitresult.str().c_str());
|
355 |
title1->SetTextSize(0.03);
|
356 |
title1->SetTextAlign(11);
|
357 |
stringstream sigmainfo;
|
358 |
sigmainfo << "#sigma=" << std::setprecision(4) << fitFunc->GetParameter(2) << "+/-" << std::setprecision(4) << fitFunc->GetParError(2);
|
359 |
// TText *sigmatext=write_text(0.80,0.96,sigmainfo.str().c_str());
|
360 |
TText *sigmatext=write_text(0.20,0.78,sigmainfo.str().c_str());
|
361 |
sigmatext->SetTextSize(0.03);
|
362 |
sigmatext->SetTextAlign(11);
|
363 |
|
364 |
// TText* toptitle;
|
365 |
// if(is_data) toptitle = write_title("Fit Result (data)");
|
366 |
// else toptitle = write_title("Fit Result (MC)");
|
367 |
// toptitle->Draw();
|
368 |
ftitle->Draw();
|
369 |
title1->Draw();
|
370 |
sigmatext->Draw();
|
371 |
if(!is_data) {
|
372 |
CompleteSave(peakfitcanvas,"fit/Fit_Summary_MC"+saveas);
|
373 |
PlottingSetup::JZBPeakPositionMC=mean;
|
374 |
PlottingSetup::JZBPeakWidthMC=fitFunc->GetParameter(2);
|
375 |
} else {
|
376 |
CompleteSave(peakfitcanvas,"fit/Fit_Summary_Data"+saveas);
|
377 |
PlottingSetup::JZBPeakPositionData=mean;
|
378 |
PlottingSetup::JZBPeakWidthData=fitFunc->GetParameter(2);
|
379 |
}
|
380 |
delete peakfitcanvas;
|
381 |
|
382 |
return mean;
|
383 |
}
|
384 |
|
385 |
|
386 |
|
387 |
float find_peak(TH1F *all, TH1F *ttbar, float minfit, float maxfit, bool is_data, float &error,float &Sigma, float& Serror, int method, string saveas)
|
388 |
{
|
389 |
float peak_position=0;
|
390 |
|
391 |
if(method==0||method>1) {
|
392 |
//looking at a gaus request
|
393 |
int numsig=1;
|
394 |
if(method>1) numsig=method;
|
395 |
peak_position=find_Gauss_peak(all,ttbar,minfit,maxfit,is_data,error,Sigma,Serror,numsig);
|
396 |
}
|
397 |
if(method==1) {
|
398 |
//looking at a KM request
|
399 |
peak_position=find_KM_peak(all,ttbar,minfit,maxfit,is_data,error,Sigma,Serror);
|
400 |
}
|
401 |
if(method==-99) { // KOSTAS!!
|
402 |
TF1 *f1 = new TF1("f1","gaus",-40,40);
|
403 |
peak_position=Kostas_algorithm(all,error,Sigma,Serror,f1,2.5,2.5,is_data,saveas);
|
404 |
}
|
405 |
return peak_position;
|
406 |
}
|
407 |
|
408 |
|
409 |
float get_Gaussian_peak(TH1F *hist, float &error, float &sigma, float& Serror, TF1* fitFunc, float lowlimit, float highlimit,bool is_data,int numsig)
|
410 |
{
|
411 |
TCanvas *fitcanvas = new TCanvas("fitcanvas","fitcanvas");
|
412 |
float mean = hist->GetBinCenter( hist->GetMaximumBin());
|
413 |
float rms = hist->GetRMS();
|
414 |
|
415 |
mean = hist->GetBinCenter( hist->GetMaximumBin());
|
416 |
|
417 |
fitFunc->SetParameter(1,mean);
|
418 |
|
419 |
hist->Fit(fitFunc,"QLL0","",mean-10,mean+10);
|
420 |
|
421 |
mean=fitFunc->GetParameter(1);
|
422 |
rms=fitFunc->GetParameter(2);
|
423 |
error=fitFunc->GetParError(1);
|
424 |
|
425 |
bool printOut = false; // print the peak estimate in the i-th iteration
|
426 |
|
427 |
// --- perform iterations
|
428 |
int numIterations=5;
|
429 |
|
430 |
if(printOut) dout << " ( ";
|
431 |
for(int i=1;i<numIterations+1;i++) //--- modify the number of iterations until peak is stable
|
432 |
{
|
433 |
hist->Fit(fitFunc,"QLLN","same",mean - numsig*rms, mean + numsig*rms); // fit -2 +1 sigma from previous iteration
|
434 |
mean=fitFunc->GetParameter(1);
|
435 |
fitFunc->SetRange(mean - numsig*rms, mean + numsig*rms);
|
436 |
if(printOut) dout << mean << ",";
|
437 |
}
|
438 |
if(printOut) dout << " ) ";
|
439 |
if(printOut) dout << endl;
|
440 |
mean=fitFunc->GetParameter(1);
|
441 |
sigma=fitFunc->GetParameter(2);
|
442 |
error=1.0*fitFunc->GetParError(1);
|
443 |
Serror=fitFunc->GetParError(2);
|
444 |
fitcanvas->cd();
|
445 |
hist->SetMinimum(0);
|
446 |
if(is_data) hist->Draw("e1");
|
447 |
else hist->Draw("histo");
|
448 |
fitFunc->SetLineColor(kBlue);
|
449 |
fitFunc->SetLineWidth(1);
|
450 |
fitFunc->Draw("same");
|
451 |
hist->SetStats(0);
|
452 |
TLegend *leg;
|
453 |
if(is_data) {
|
454 |
leg= make_legend("Fit (Data)");
|
455 |
leg->AddEntry(hist,"Data","p");
|
456 |
}
|
457 |
else {
|
458 |
leg= make_legend("Fit (MC)");
|
459 |
leg->AddEntry(hist,"MC","l");
|
460 |
}
|
461 |
|
462 |
leg->AddEntry(fitFunc,"Fit","l");
|
463 |
leg->Draw();
|
464 |
|
465 |
TText *ftitle=write_text(0.20,0.86,"Fit results:");
|
466 |
ftitle->SetTextSize(0.03);
|
467 |
ftitle->SetTextAlign(11);
|
468 |
stringstream fitresult;
|
469 |
fitresult << "#mu=" << std::setprecision(4) << mean << "+/-" << std::setprecision(4) << error;
|
470 |
// TText *title1=write_text(0.20,0.96,fitresult.str().c_str());
|
471 |
TText *title1=write_text(0.20,0.82,fitresult.str().c_str());
|
472 |
title1->SetTextSize(0.03);
|
473 |
title1->SetTextAlign(11);
|
474 |
stringstream sigmainfo;
|
475 |
sigmainfo << "#sigma=" << std::setprecision(4) << fitFunc->GetParameter(2) << "+/-" << std::setprecision(4) << fitFunc->GetParError(2);
|
476 |
// TText *sigmatext=write_text(0.80,0.96,sigmainfo.str().c_str());
|
477 |
TText *sigmatext=write_text(0.20,0.78,sigmainfo.str().c_str());
|
478 |
sigmatext->SetTextSize(0.03);
|
479 |
sigmatext->SetTextAlign(11);
|
480 |
|
481 |
// TText* toptitle;
|
482 |
// if(is_data) toptitle = write_title("Fit Result (data)");
|
483 |
// else toptitle = write_title("Fit Result (MC)");
|
484 |
// toptitle->Draw();
|
485 |
ftitle->Draw();
|
486 |
title1->Draw();
|
487 |
sigmatext->Draw();
|
488 |
if(!is_data) CompleteSave(fitcanvas,"fit/Fit_Summary_MC");
|
489 |
if(is_data) CompleteSave(fitcanvas,"fit/Fit_Summary_Data");
|
490 |
|
491 |
|
492 |
// dout << "[" << fitFunc->GetParameter(1) << " , " << fitFunc->GetParError(1) << "]" << endl;
|
493 |
return mean;
|
494 |
}
|
495 |
|
496 |
|
497 |
float find_Gauss_peak(TH1F *all, TH1F *ttbar, float minfit, float maxfit, bool is_data, float &error,float &Sigma,float& Serror, int numsig)
|
498 |
{
|
499 |
TF1 *fitfunc = new TF1("fitfunc","gaus",minfit,maxfit);
|
500 |
float peakpos = get_Gaussian_peak(all,error,Sigma,Serror,fitfunc, minfit, maxfit,is_data,numsig);
|
501 |
return peakpos;
|
502 |
}
|
503 |
|
504 |
float find_KM_peak(TH1F *all, TH1F *ttbar, float minfit, float maxfit, bool is_data, float &error,float &Sigma, float& Serror)
|
505 |
{
|
506 |
all->SetLineColor(kBlue);
|
507 |
all->SetStats(0);
|
508 |
all->SetTitle("");
|
509 |
all->GetXaxis()->SetTitle("JZB (GeV/c)");
|
510 |
all->GetYaxis()->SetTitle("events");
|
511 |
all->GetXaxis()->CenterTitle();
|
512 |
all->GetYaxis()->CenterTitle();
|
513 |
TF1 *fitfunc = new TF1("fitfunc",KrystalMallLogPar,0.8*minfit,0.8*maxfit,8);
|
514 |
if(!is_data)
|
515 |
{
|
516 |
TF1 *logpar = new TF1("logpar",LogParabola,minfit,maxfit,3);
|
517 |
do_ttbar_fit(ttbar,logpar,fitfunc);
|
518 |
fitfunc->SetParameters(1000,2,2.5,-1.6,4,logpar->GetParameter(0),logpar->GetParameter(1),logpar->GetParameter(2));
|
519 |
parabola_height=logpar->GetParameter(0);
|
520 |
parabola_inclination=logpar->GetParameter(1);
|
521 |
parabola_pointzero=logpar->GetParameter(2);
|
522 |
dofixed=true;//ttbar is known so we can fix the parameters and don't need to use them for fitting!
|
523 |
}
|
524 |
else
|
525 |
{
|
526 |
fitfunc->SetParameters(1000,2,2.5,-1.6,4,5.45039,0.000324593,12.3528);
|
527 |
dofixed=false;
|
528 |
}
|
529 |
|
530 |
vector<float> chi2values;
|
531 |
addparabola=true;
|
532 |
for (int ifit=0;ifit<100;ifit++)
|
533 |
{
|
534 |
all->Fit(fitfunc,"NQ");
|
535 |
chi2values.push_back(fitfunc->GetChisquare());
|
536 |
if(ifit>5&&chi2values[ifit-2]==chi2values[ifit]) break;
|
537 |
}
|
538 |
/*
|
539 |
The parameters represent the following quantities:
|
540 |
float N=par[0];
|
541 |
float alpha=par[1];
|
542 |
float n=par[2];
|
543 |
float xbar=par[3];
|
544 |
float sigma=par[4];
|
545 |
*/
|
546 |
//we are clearing an area of two sigma to the left and to the right of the center of the function for the "real fit".
|
547 |
low_reject=-2*fitfunc->GetParameter(4)+fitfunc->GetParameter(3);
|
548 |
hi_reject=fitfunc->GetParameter(3)+2*fitfunc->GetParameter(4);
|
549 |
if(low_reject>-15) low_reject=-10;
|
550 |
if(hi_reject<15) hi_reject=10;
|
551 |
doreject=true;//activating the rejection :-)
|
552 |
|
553 |
for (int ifit=0;ifit<100;ifit++)
|
554 |
{
|
555 |
all->Fit(fitfunc,"NQ");
|
556 |
chi2values.push_back(fitfunc->GetChisquare());
|
557 |
if(ifit>5&&chi2values[ifit-2]==chi2values[ifit]) break;
|
558 |
}
|
559 |
|
560 |
draw_complete_fit(all,ttbar,minfit,maxfit,is_data,fitfunc);
|
561 |
doreject=true;
|
562 |
error=fitfunc->GetParError(3);
|
563 |
Sigma=fitfunc->GetParameter(4);//sigma
|
564 |
Serror=fitfunc->GetParError(4);
|
565 |
|
566 |
return fitfunc->GetParameter(3);
|
567 |
}
|
568 |
|
569 |
Double_t InvCrystalBall(Double_t *x,Double_t *par)
|
570 |
{
|
571 |
Double_t arg1=0,arg2=0,A=0,B=0;
|
572 |
Double_t f1=0;
|
573 |
Double_t f2=0;
|
574 |
Double_t lim=0;
|
575 |
Double_t fitval=0;
|
576 |
Double_t N=0;
|
577 |
Double_t n=par[4];
|
578 |
|
579 |
Double_t invX = -x[0];
|
580 |
|
581 |
if (par[2] != 0)
|
582 |
arg1 = (invX-par[1])/par[2];
|
583 |
|
584 |
arg2 = ( -pow( TMath::Abs(par[3]) , 2 ) ) / 2 ;
|
585 |
|
586 |
if (par[3] != 0)
|
587 |
A = pow( ( n / TMath::Abs( par[3] ) ) , n) * TMath::Exp(arg2);
|
588 |
|
589 |
if (par[3] != 0)
|
590 |
B = n / TMath::Abs(par[3]) - TMath::Abs(par[3]);
|
591 |
|
592 |
f1 = TMath::Exp(-0.5*arg1*arg1);
|
593 |
if (par[2] != 0)
|
594 |
f2 = A * pow( ( B - (invX - par[1])/par[2] ) , -n );
|
595 |
|
596 |
if (par[2] != 0)
|
597 |
lim = ( par[1] - invX ) / par[2] ;
|
598 |
|
599 |
N = par[0];
|
600 |
|
601 |
|
602 |
|
603 |
if(lim < par[3])
|
604 |
fitval = N * f1;
|
605 |
if(lim >= par[3])
|
606 |
fitval = N * f2;
|
607 |
|
608 |
return fitval;
|
609 |
}
|
610 |
|
611 |
|
612 |
Double_t DoubleInvCrystalBall(Double_t *x,Double_t *par)
|
613 |
{
|
614 |
Double_t arg1=0,arg2=0,A=0,B=0;
|
615 |
Double_t f1=0;
|
616 |
Double_t f2=0;
|
617 |
Double_t lim=0;
|
618 |
Double_t fitval=0;
|
619 |
Double_t N=0;
|
620 |
Double_t n=par[4];
|
621 |
|
622 |
Double_t Sarg1=0,Sarg2=0,SA=0,SB=0;
|
623 |
Double_t Sf1=0;
|
624 |
Double_t Sf2=0;
|
625 |
Double_t Slim=0;
|
626 |
Double_t Sfitval=0;
|
627 |
Double_t SN=0;
|
628 |
Double_t Sn=par[9];
|
629 |
|
630 |
Double_t invX = -x[0];
|
631 |
|
632 |
if (par[2] != 0) arg1 = (invX-par[1])/par[2];
|
633 |
|
634 |
if (par[7] != 0) Sarg1 = (invX-par[6])/par[7];
|
635 |
|
636 |
arg2 = ( -pow( TMath::Abs(par[3]) , 2 ) ) / 2 ;
|
637 |
Sarg2 = ( -pow( TMath::Abs(par[8]) , 2 ) ) / 2 ;
|
638 |
|
639 |
if (par[3] != 0) A = pow( ( n / TMath::Abs( par[3] ) ) , n) * TMath::Exp(arg2);
|
640 |
if (par[8] != 0) SA = pow( ( Sn / TMath::Abs( par[8] ) ) , Sn) * TMath::Exp(Sarg2);
|
641 |
|
642 |
if (par[3] != 0) B = n / TMath::Abs(par[3]) - TMath::Abs(par[3]);
|
643 |
if (par[8] != 0) SB = Sn / TMath::Abs(par[8]) - TMath::Abs(par[8]);
|
644 |
|
645 |
f1 = TMath::Exp(-0.5*arg1*arg1);
|
646 |
Sf1 = TMath::Exp(-0.5*Sarg1*Sarg1);
|
647 |
|
648 |
if (par[2] != 0) f2 = A * pow( ( B - (invX - par[1])/par[2] ) , -n );
|
649 |
if (par[7] != 0) Sf2 = SA * pow( ( SB - (invX - par[6])/par[7] ) , -Sn );
|
650 |
|
651 |
if (par[2] != 0) lim = ( par[1] - invX ) / par[2] ;
|
652 |
if (par[7] != 0) Slim = ( par[6] - invX ) / par[7] ;
|
653 |
|
654 |
N = par[0];
|
655 |
SN = par[5];
|
656 |
|
657 |
|
658 |
|
659 |
if(lim < par[3]) fitval = N * f1;
|
660 |
if(lim >= par[3]) fitval = N * f2;
|
661 |
|
662 |
if(Slim < par[8]) Sfitval = SN * Sf1;
|
663 |
if(Slim >= par[8]) Sfitval = SN * Sf2;
|
664 |
|
665 |
return fitval+Sfitval;
|
666 |
}
|
667 |
|
668 |
Double_t DoubleInvCrystalBallP(Double_t *x,Double_t *par)
|
669 |
{
|
670 |
Double_t arg1=0,arg2=0,A=0,B=0;
|
671 |
Double_t f1=0;
|
672 |
Double_t f2=0;
|
673 |
Double_t lim=0;
|
674 |
Double_t fitval=0;
|
675 |
Double_t N=0;
|
676 |
Double_t n=par[4];
|
677 |
|
678 |
Double_t Sarg1=0,Sarg2=0,SA=0,SB=0;
|
679 |
Double_t Sf1=0;
|
680 |
Double_t Sf2=0;
|
681 |
Double_t Slim=0;
|
682 |
Double_t Sfitval=0;
|
683 |
Double_t SN=0;
|
684 |
Double_t Sn=par[9];
|
685 |
|
686 |
Double_t invX = -x[0];
|
687 |
|
688 |
if (par[2] != 0) arg1 = (invX-par[1])/par[2];
|
689 |
|
690 |
if (par[7] != 0) Sarg1 = (invX-par[6])/par[7];
|
691 |
|
692 |
arg2 = ( -pow( TMath::Abs(par[3]) , 2 ) ) / 2 ;
|
693 |
Sarg2 = ( -pow( TMath::Abs(par[8]) , 2 ) ) / 2 ;
|
694 |
|
695 |
if (par[3] != 0) A = pow( ( n / TMath::Abs( par[3] ) ) , n) * TMath::Exp(arg2);
|
696 |
if (par[8] != 0) SA = pow( ( Sn / TMath::Abs( par[8] ) ) , Sn) * TMath::Exp(Sarg2);
|
697 |
|
698 |
if (par[3] != 0) B = n / TMath::Abs(par[3]) - TMath::Abs(par[3]);
|
699 |
if (par[8] != 0) SB = Sn / TMath::Abs(par[8]) - TMath::Abs(par[8]);
|
700 |
|
701 |
f1 = TMath::Exp(-0.5*arg1*arg1);
|
702 |
Sf1 = TMath::Exp(-0.5*Sarg1*Sarg1);
|
703 |
|
704 |
if (par[2] != 0) f2 = A * pow( ( B - (invX - par[1])/par[2] ) , -n );
|
705 |
if (par[7] != 0) Sf2 = SA * pow( ( SB - (invX - par[6])/par[7] ) , -Sn );
|
706 |
|
707 |
if (par[2] != 0) lim = ( par[1] - invX ) / par[2] ;
|
708 |
if (par[7] != 0) Slim = ( par[6] - invX ) / par[7] ;
|
709 |
|
710 |
N = par[0];
|
711 |
SN = par[5];
|
712 |
|
713 |
|
714 |
|
715 |
if(lim < par[3]) fitval = N * f1;
|
716 |
if(lim >= par[3]) fitval = N * f2;
|
717 |
|
718 |
if(Slim < par[8]) Sfitval = SN * Sf1;
|
719 |
if(Slim >= par[8]) Sfitval = SN * Sf2;
|
720 |
|
721 |
fitval+=Sfitval;
|
722 |
fitval+=statErrorP(fitval);
|
723 |
|
724 |
return fitval;
|
725 |
}
|
726 |
|
727 |
Double_t DoubleInvCrystalBallN(Double_t *x,Double_t *par)
|
728 |
{
|
729 |
Double_t arg1=0,arg2=0,A=0,B=0;
|
730 |
Double_t f1=0;
|
731 |
Double_t f2=0;
|
732 |
Double_t lim=0;
|
733 |
Double_t fitval=0;
|
734 |
Double_t N=0;
|
735 |
Double_t n=par[4];
|
736 |
|
737 |
Double_t Sarg1=0,Sarg2=0,SA=0,SB=0;
|
738 |
Double_t Sf1=0;
|
739 |
Double_t Sf2=0;
|
740 |
Double_t Slim=0;
|
741 |
Double_t Sfitval=0;
|
742 |
Double_t SN=0;
|
743 |
Double_t Sn=par[9];
|
744 |
|
745 |
Double_t invX = -x[0];
|
746 |
|
747 |
if (par[2] != 0) arg1 = (invX-par[1])/par[2];
|
748 |
|
749 |
if (par[7] != 0) Sarg1 = (invX-par[6])/par[7];
|
750 |
|
751 |
arg2 = ( -pow( TMath::Abs(par[3]) , 2 ) ) / 2 ;
|
752 |
Sarg2 = ( -pow( TMath::Abs(par[8]) , 2 ) ) / 2 ;
|
753 |
|
754 |
if (par[3] != 0) A = pow( ( n / TMath::Abs( par[3] ) ) , n) * TMath::Exp(arg2);
|
755 |
if (par[8] != 0) SA = pow( ( Sn / TMath::Abs( par[8] ) ) , Sn) * TMath::Exp(Sarg2);
|
756 |
|
757 |
if (par[3] != 0) B = n / TMath::Abs(par[3]) - TMath::Abs(par[3]);
|
758 |
if (par[8] != 0) SB = Sn / TMath::Abs(par[8]) - TMath::Abs(par[8]);
|
759 |
|
760 |
f1 = TMath::Exp(-0.5*arg1*arg1);
|
761 |
Sf1 = TMath::Exp(-0.5*Sarg1*Sarg1);
|
762 |
|
763 |
if (par[2] != 0) f2 = A * pow( ( B - (invX - par[1])/par[2] ) , -n );
|
764 |
if (par[7] != 0) Sf2 = SA * pow( ( SB - (invX - par[6])/par[7] ) , -Sn );
|
765 |
|
766 |
if (par[2] != 0) lim = ( par[1] - invX ) / par[2] ;
|
767 |
if (par[7] != 0) Slim = ( par[6] - invX ) / par[7] ;
|
768 |
|
769 |
N = par[0];
|
770 |
SN = par[5];
|
771 |
|
772 |
|
773 |
|
774 |
if(lim < par[3]) fitval = N * f1;
|
775 |
if(lim >= par[3]) fitval = N * f2;
|
776 |
|
777 |
if(Slim < par[8]) Sfitval = SN * Sf1;
|
778 |
if(Slim >= par[8]) Sfitval = SN * Sf2;
|
779 |
|
780 |
fitval+=Sfitval;
|
781 |
fitval-=statErrorN(fitval);
|
782 |
|
783 |
return fitval;
|
784 |
}
|
785 |
|
786 |
Double_t InvCrystalBallP(Double_t *x,Double_t *par)
|
787 |
{
|
788 |
Double_t arg1=0,arg2=0,A=0,B=0;
|
789 |
Double_t f1=0;
|
790 |
Double_t f2=0;
|
791 |
Double_t lim=0;
|
792 |
Double_t fitval=0;
|
793 |
Double_t N=0;
|
794 |
Double_t n=par[4];
|
795 |
|
796 |
Double_t invX = -x[0];
|
797 |
|
798 |
if (par[2] != 0)
|
799 |
arg1 = (invX-par[1])/par[2];
|
800 |
|
801 |
arg2 = ( -pow( TMath::Abs(par[3]) , 2 ) ) / 2 ;
|
802 |
|
803 |
if (par[3] != 0)
|
804 |
A = pow( ( n / TMath::Abs( par[3] ) ) , n) * TMath::Exp(arg2);
|
805 |
|
806 |
if (par[3] != 0)
|
807 |
B = n / TMath::Abs(par[3]) - TMath::Abs(par[3]);
|
808 |
|
809 |
f1 = TMath::Exp(-0.5*arg1*arg1);
|
810 |
if (par[2] != 0)
|
811 |
f2 = A * pow( ( B - (invX - par[1])/par[2] ) , -n );
|
812 |
|
813 |
if (par[2] != 0)
|
814 |
lim = ( par[1] - invX ) / par[2] ;
|
815 |
|
816 |
N = par[0];
|
817 |
|
818 |
|
819 |
|
820 |
if(lim < par[3])
|
821 |
fitval = N * f1;
|
822 |
if(lim >= par[3])
|
823 |
fitval = N * f2;
|
824 |
|
825 |
fitval+= statErrorP(fitval);
|
826 |
return fitval;
|
827 |
}
|
828 |
|
829 |
Double_t InvCrystalBallN(Double_t *x,Double_t *par)
|
830 |
{
|
831 |
Double_t arg1=0,arg2=0,A=0,B=0;
|
832 |
Double_t f1=0;
|
833 |
Double_t f2=0;
|
834 |
Double_t lim=0;
|
835 |
Double_t fitval=0;
|
836 |
Double_t N=0;
|
837 |
Double_t n=par[4];
|
838 |
|
839 |
Double_t invX = -x[0];
|
840 |
|
841 |
if (par[2] != 0)
|
842 |
arg1 = (invX-par[1])/par[2];
|
843 |
|
844 |
arg2 = ( -pow( TMath::Abs(par[3]) , 2 ) ) / 2 ;
|
845 |
|
846 |
if (par[3] != 0)
|
847 |
A = pow( ( n / TMath::Abs( par[3] ) ) , n) * TMath::Exp(arg2);
|
848 |
|
849 |
if (par[3] != 0)
|
850 |
B = n / TMath::Abs(par[3]) - TMath::Abs(par[3]);
|
851 |
|
852 |
f1 = TMath::Exp(-0.5*arg1*arg1);
|
853 |
if (par[2] != 0)
|
854 |
f2 = A * pow( ( B - (invX - par[1])/par[2] ) , -n );
|
855 |
|
856 |
if (par[2] != 0)
|
857 |
lim = ( par[1] - invX ) / par[2] ;
|
858 |
|
859 |
N = par[0];
|
860 |
|
861 |
|
862 |
|
863 |
if(lim < par[3])
|
864 |
fitval = N * f1;
|
865 |
if(lim >= par[3])
|
866 |
fitval = N * f2;
|
867 |
|
868 |
fitval-= statErrorN(fitval);
|
869 |
return fitval;
|
870 |
}
|
871 |
|
872 |
|