ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/appendix_trigger.tex
Revision: 1.12
Committed: Sun Nov 14 19:28:39 2010 UTC (14 years, 5 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
Changes since 1.11: +2 -2 lines
Log Message:
typo

File Contents

# User Rev Content
1 claudioc 1.11 \setcounter{table}{0}
2     \renewcommand\thetable{\Alph{section}.\arabic{table}}
3     \setcounter{figure}{0}
4     \renewcommand\thefigure{\Alph{section}.\arabic{figure}}
5 benhoob 1.1 \section{Trigger Efficiency Model}
6     \label{sec:appendix_trigger}
7    
8     As described in Section~\ref{sec:trigSel} we rely on a
9     mixture of single and double lepton triggers. The trigger
10     efficiency is very high because for most of the phase space
11     we have two leptons each of which can fire a single lepton
12     trigger -- and the single lepton triggers are very efficient.
13    
14     We apply to MC events a simplified model of the trigger efficiency
15     as a function of dilepton species ($ee$, $e\mu$, $\mu\mu$), the $P_T$
16     of the individual leptons, and, in the case of muons, the $|\eta|$
17     of the muons. We believe that this model is adequate for
18     the trigger efficiency precision needed for this analysis.
19    
20 claudioc 1.3 The model assumptions are the following:
21 benhoob 1.1
22     \begin{itemize}
23    
24     \item Muon and electron trigger turn-ons as a function of $P_T$
25 claudioc 1.10 are infinitely sharp. %{\color{red} Can we add references?}
26 benhoob 1.1
27 claudioc 1.7 \item All electron triggers with no ID have essentially 100\%
28     efficiency for electrons passing our analysis cuts\cite{ref:evans}.
29 benhoob 1.1
30     \item Electron triggers with (Tight(er))CaloEleId have 100\%
31     efficiency with respect to our offline selection. This we
32     verified via tag-and-probe on $Z\to ee$.
33    
34     \item Electron triggers with EleId have somewhat lower
35     efficiency. This was also measured by tag-and-probe.
36    
37 claudioc 1.7 \item The single muon trigger has 40\% efficiency for
38 claudioc 1.4 $|\eta|>2.1$~\cite{ref:evans}.
39 benhoob 1.1
40 claudioc 1.9 \item If a muon fails the single muon trigger, it
41 claudioc 1.5 will also fail the double muon trigger. This is actually
42 claudioc 1.9 a conservative assumption. See Section~\ref{sec:emutrg}
43     for a discussion of $e\mu$ triggers.
44 benhoob 1.1
45     \item The double muon trigger has efficiency
46 claudioc 1.5 equal to the square of the single muon efficiency. This is
47     also a conservative assumption.
48 benhoob 1.1
49     \item The $e\mu$ triggers have no efficiency if the muon has $|\eta|>2.1$.
50 claudioc 1.5 Again, this is conservative.
51 benhoob 1.1 \end{itemize}
52    
53     The model also uses some luminosity fractions and some trigger
54     efficiencies.
55    
56     \begin{itemize}
57    
58 claudioc 1.4 \item $\epsilon_{\mu}$=93\%, the single muon trigger efficiency plateau
59     for $|\eta|<2.1$~\cite{ref:evans};
60    
61 claudioc 1.5 \item $\epsilon'_{\mu}$=40\%, the single muon trigger efficiency plateau
62 claudioc 1.4 for $|\eta|>2.1$~\cite{ref:evans};
63 benhoob 1.1
64 claudioc 1.2 \item $f9$=0.215: fraction of data with the Mu9 trigger unprescaled.
65 benhoob 1.1 (run$\le 147116$).
66    
67 claudioc 1.4 \item $f11$=0.273 fraction of data with the Mu9 trigger prescaled and
68 benhoob 1.1 the Mu11 trigger unprescaled.
69     (147196 $\leq$ run $\leq$ 148058).
70    
71 claudioc 1.2 \item $e10$=0.002: fraction of data with the 10 GeV unprescaled electron triggers.
72 benhoob 1.1 (run$\le 139980$).
73    
74 claudioc 1.2 \item $e15$=0.086: fraction of data with the 15 GeV unprescaled electron triggers.
75 benhoob 1.1 (139980 $<$ run $\leq$ 144114).
76    
77 claudioc 1.2 \item $e17$=0.127: fraction of data with the 100\% efficient 17 GeV unprescaled electron triggers.
78 benhoob 1.1 (144114 $<$ run $\leq$ 147116).
79    
80 claudioc 1.2 \item $e17b$=0.273: fraction of data with 17 GeV unprescaled electron triggers
81 benhoob 1.1 with efficiency $\epsilon_e^b=90\%$ (as measured by tag-and-probe).
82     (147116 $<$ run $\leq$ 148058).
83    
84 claudioc 1.3 \item $emess$=0.512: the remainder of the run with several different electron
85 benhoob 1.1 triggers, all of $P_T>17$ GeV. For this period we measure the
86     luminosity-weighted
87     trigger efficiency $\epsilon(P_T)$ via tag and probe to be 99\%
88     ($17<P_T<22$, 97\% ($22<P_T<27$), 98\% ($27<P_T<32$) and
89     100\% ($P_T>32$).
90    
91     \end{itemize}
92    
93     The full trigger efficiency model is described separately for
94     $ee$, $e\mu$, and $\mu\mu$.
95    
96     \subsection{$ee$ efficiency model}
97     \label{sec:eemodel}
98    
99     This is the easiest. Throughout the 2010 run we have always
100     had dielectron triggers with thresholds lower than our (20,10)
101 claudioc 1.4 analysis thresholds. Since electron triggers are very close
102     to 100\% efficient\cite{ref:evans},
103 benhoob 1.1 the trigger efficiency for $ee$ is 100\%. We have verified that
104     the efficiency of the dielectron trigger is 100\% with respect
105     to the single electron trigger using $Z \to ee$ data.
106    
107     \subsection{$\mu\mu$ efficiency model}
108     \label{sec:mmmodel}
109    
110     We consider different cases.
111    
112     \subsubsection{Both muons in $|\eta|<2.1$ and with $P_T>15$ GeV}
113     This is the bulk of the $\mu\mu$.
114    
115     \begin{center}
116     $\epsilon = 1 - (1-\epsilon_{\mu})^2$
117     \end{center}
118    
119     \subsubsection{Both muons in $|\eta|<2.1$, one muon with $11<P_T<15$ GeV}
120     In this case there must be a muon with $P_T>20$ GeV. The single muon
121     trigger is operative for the full dataset on this muon. Some loss
122     of efficiency can be recovered when the 2nd muon fires the trigger.
123     But this can happen only for a fraction of the run. The dimuon trigger
124     cannot fire in our model to recover any of the efficiency lost by
125     the single muon trigger on the high $P_T$ muon.
126    
127     \begin{center}
128     $\epsilon = \epsilon_{\mu} + (1-\epsilon_{\mu})\epsilon_{\mu}(f9+f11)$
129     \end{center}
130    
131     \subsubsection{Both muons in $|\eta|<2.1$, one muon with $10<P_T<11$ GeV}
132     Same basic idea as above.
133    
134     \begin{center}
135     $\epsilon = \epsilon_{\mu} + (1-\epsilon_{\mu})\epsilon_{\mu}f9$
136     \end{center}
137    
138     \subsubsection{Both muons with $|\eta|>2.1$}
139 claudioc 1.4 This is a very small fraction of events.
140     %In our model they can only be triggered by the dimuon trigger.
141 benhoob 1.1
142     \begin{center}
143 claudioc 1.4 $\epsilon = \epsilon_{\mu}^2 + \alpha (1-\epsilon_{\mu}) \epsilon'_{\mu}$
144 benhoob 1.1 \end{center}
145    
146 claudioc 1.4 \noindent where $\alpha=2$ if both muons are above 15 GeV, $\alpha=(1+f9+f11)$ if
147     one of the muons is between 11 and 15 GeV, and $\alpha=(1+f9)$ if one of the muon
148     is below 11 GeV.
149    
150 benhoob 1.1 \subsubsection{First muon with $P_T>15$ and $|\eta|<2.1$; second muon
151     with $|\eta|>2.1$}
152     The single muon trigger is always operative. If it fails the double muon
153     trigger also fails.
154    
155     \begin{center}
156 claudioc 1.4 $\epsilon = \epsilon_{\mu} + (1-\epsilon_{\mu})\Delta_{\mu}$
157     \end{center}
158    
159     \noindent where
160    
161     \begin{center}
162     $\Delta_{\mu} = \epsilon'_{\mu}$ ~~~~(2nd muon with $P_T \geq 15$ GeV) \\
163     $\Delta_{\mu} = (f9+f11)\epsilon'_{\mu}$ ~~~~(2nd muon with $11 \leq P_T < 15$ GeV) \\
164     $\Delta_{\mu} = f9\epsilon'_{\mu}$ ~~~~(2nd muon with $9 \leq P_T < 11$ GeV) \\
165 benhoob 1.1 \end{center}
166    
167 claudioc 1.4
168 benhoob 1.1 \subsubsection{First muon with $11<P_T<15$ and $|\eta|<2.1$; second muon
169 claudioc 1.4 with $|\eta|>2.1$ and $P_T>20$}
170     The single muon trigger at low $\eta$ is fully operative only for a fraction of the run,
171     this efficiency is captured by the first term below.
172     For the remaining fraction, we rely on the double muon trigger as well as the
173     single muon trigger at high $\eta$ (2nd term in the equation).
174    
175     \begin{center}
176     $\epsilon = (f9+f11)(\epsilon_{\mu} + (1-\epsilon_{\mu})\epsilon'_{\mu})
177     + (1-f9-f11)(\epsilon_{\mu}^2 + (1-\epsilon_{\mu})\epsilon'_{\mu})$
178     \end{center}
179    
180     \noindent which reduces to
181 benhoob 1.1
182     \begin{center}
183 claudioc 1.4 $\epsilon = (f9+f11)\epsilon_{\mu} + (1-f9-f11)\epsilon_{\mu}^2
184     + (1-\epsilon_{\mu})\epsilon'_{\mu}$
185 benhoob 1.1 \end{center}
186    
187     \subsubsection{First muon with $10<P_T<11$ and $|\eta|<2.1$; second muon
188 claudioc 1.4 with $|\eta|>2.1$ and $P_T>20$}
189 benhoob 1.1 Same basic idea as above.
190    
191     \begin{center}
192 claudioc 1.4 % $\epsilon = f9~\epsilon_{\mu} + (1-f9)\epsilon_{\mu}^2$
193     $\epsilon = f9\epsilon_{\mu} + (1-f9)\epsilon_{\mu}^2
194     + (1-\epsilon_{\mu})\epsilon'_{\mu}$
195 benhoob 1.1 \end{center}
196    
197     \subsection{$e\mu$ efficiency model}
198     \label{sec:emumodel}
199    
200     This is the most complicated case. The idea is that the muon trigger
201     is used to get the bulk of the efficiency. Then the single electron
202     trigger(s) and the $e\mu$ triggers are used to get back dome of the
203     efficiency loss. The various cases are listed below.
204    
205     \subsubsection{Muon with $|\eta|<2.1$ and $P_T>15$}
206     This is the bulk of the acceptance.
207    
208     \begin{center}
209     $\epsilon = \epsilon_{\mu} + (1-\epsilon_{\mu})\Delta_1$
210     \end{center}
211    
212     where $\Delta_1$ is the efficiency from the electron trigger:
213     \begin{itemize}
214     \item $P_T(ele)<15 \to \Delta_1=e10$
215     \item $15<P_T(ele)<17 \to \Delta_1=e10+e15$
216     \item $P_T(ele)>15 \to \Delta_1=e10+e15+e17+\epsilon_e^b~e17b+\epsilon(P_T)~emess$
217     \end{itemize}
218    
219    
220 claudioc 1.12 \subsubsection{Muon with $|\eta|<2.1$ and $11<P_T<15$}
221 benhoob 1.1
222     This is the similar to the previous case, except that the muon
223     trigger is operative only for a subset of the data taking period.
224    
225     \begin{center}
226     $\epsilon = (f11+f9)\epsilon_{\mu} + \Delta_2 + \Delta_3$
227     \end{center}
228    
229     Here $\Delta_2$ is associated with the period where the muon
230     trigger was at 15 GeV, in which case we use electron triggers or
231     $e\mu$ triggers. Note that the electron in this case must be
232     above 20 GeV. This can happen only in the latter part of the run,
233     thus we write
234     \begin{center}
235     $\Delta_2 = (1-f11-f9)~(\epsilon_{\mu}~+~
236     (1-\epsilon_{\mu})\epsilon(P_T))$
237     \end{center}
238     \noindent where the first term is for the $e\mu$ trigger and the
239     second term corresponds to $e\mu$ trigger failures, in which case we have
240     to rely on the electron trigger.
241    
242     Then, $\Delta_3$ is associated with muon trigger failures in early runs,
243     {\em i.e.}, run $<148819$. In this case the electron trigger picks it
244     up and the $e\mu$ trigger does not help.
245    
246     \begin{center}
247     $\Delta_3 = (f11+f9)(1-\epsilon_{\mu}) \cdot \epsilon_e$
248     \end{center}
249    
250     \noindent where $\epsilon_e$ is the efficiency of the electron
251     trigger for $P_T>20$. This is 100\% up to run 147716 (fraction
252     $(e10_e15+e17)/(f11+f9)$; then it is somewhat lower up to
253     run 148058, then it becomes very close to 100\% again.
254     For this latter part of the run we approximate it as $\epsilon_e^b$.
255     Thus:
256    
257     \begin{center}
258     $\epsilon_e = (e10_e15+e17)/(f11+f9) +
259     \epsilon_e^b(f11+f9-e10-e15-e17)/(f11+f9)$
260     \end{center}
261    
262 claudioc 1.12 \subsubsection{Muon with $|\eta|<2.1$ and $9<P_T<11$}
263 benhoob 1.1
264     Identical to the previous case, but replace $(f11+f9)$ with $f9$ everywhere.
265    
266     \subsubsection{Muon with $|\eta|>2.1$}
267    
268 claudioc 1.4 This is a 10\% effect to start with.
269     The first term is from the electron efficiency. The 2nd term is the correction
270     due to the single muon efficieny.
271 benhoob 1.1
272     \begin{center}
273 claudioc 1.4 $\epsilon = \Delta_1 + (1-\Delta_1)\Delta_{\mu}$
274 benhoob 1.1 \end{center}
275    
276     \subsection{Summary of the trigger efficiency model}
277     \label{sec:trgeffsum}
278    
279     We take the trigger efficiency for $ee$ as 100\%. The trigger efficiency
280 claudioc 1.3 for the $e\mu$ and $\mu\mu$ final states is summarized in
281 claudioc 1.5 Figures~\ref{fig:emuModel} and~\ref{fig:mumuModel}.
282 benhoob 1.1 We estimate the systematic uncertainties on the trigger modeling
283     to be at the few percent level.
284    
285 claudioc 1.5 \begin{figure}[htb]
286     \begin{center}
287     \includegraphics[width=0.99\linewidth]{emuModel.png}
288     \caption{\label{fig:emuModel}\protect Trigger efficiency for the
289     $e\mu$ pair as a function of the $P_T$ of the two leptons.
290     The top table corresponds to $|\eta(\mu)| < 2.1$, the bottom
291     table to $|\eta(\mu)| > 2.1$.}
292     \end{center}
293     \end{figure}
294     \clearpage
295    
296 claudioc 1.3
297     \begin{figure}[tbh]
298     \begin{center}
299 claudioc 1.5 \includegraphics[width=0.99\linewidth]{mumuModel.png}
300     \includegraphics[width=0.99\linewidth]{mumu24Model.png}
301 claudioc 1.3 \caption{\label{fig:mumuModel}\protect Trigger efficiency for the
302     $\mu\mu$ pair as a function of the $P_T$ of the two muons.
303     The top table corresponds to both muons having $|\eta| < 2.1$;
304 claudioc 1.5 the middle table has one of the muon with $|\eta|<2.1$ and the
305     other muon with $|\eta|>2.1$; the bottom table has both muons with
306     have $|\eta|>2.1$.}
307 claudioc 1.3 \end{center}
308     \end{figure}
309    
310 claudioc 1.9 \clearpage
311    
312     \subsection{$e\mu$ trigger study}
313     \label{sec:emutrg}
314     The $e\mu$ cross triggers were introduced late in the run and are
315     not well studied (as far as we know). We performed a study to verify
316     the key assumptions of the model:
317     \begin{enumerate}
318 claudioc 1.10 \item the $\mu$ component of the $e\mu$ trigger is at least as efficient
319 claudioc 1.9 as the single muon trigger;
320 claudioc 1.10 \item the electron component of the $e\mu$ trigger is essentially 100\% efficient,
321 claudioc 1.9 as already determined by tag and probe.
322     \end{enumerate}
323    
324     To this end, we select $e\mu$ events in the run ranges were the
325     $e\mu$ triggers were operational as follows:
326     \begin{itemize}
327     \item An offline muon of $P_T > 10$ GeV satisfying the standard
328     requireemnts.
329     \item This muon must have fired one of the unprescaled single muon triggers.
330 claudioc 1.10 \item An offline electron of $P_T > 20$ GeV satisfying the standard requirements.
331     %\item This electron must have fired one of the unprescaled electron triggers,
332     %which are known to be essentially 100\% efficient on real electrons
333     %from tag \& probe studies.
334 claudioc 1.9 \end{itemize}
335    
336    
337    
338     \begin{figure}[hbt]
339     \begin{center}
340     \includegraphics[width=\linewidth]{emu_trigger.png}
341     \caption{\label{fig:emutrg}\protect $e\mu$ trigger efficiency
342     as a function of run number. We plot the trigger
343     efficiency of a given variant of the $e\mu$ trigger only for
344     the runs when said trigger was enabled.}
345     \end{center}
346     \end{figure}
347    
348    
349     We then defined the $e\mu$ trigger efficiency as the probability
350     for $e\mu$ trigger to fire on these events.
351     The results are shown in Figure~\ref{fig:emutrg}. We find 100\%
352     trigger efficiency (as expected) for {\tt Mu5\_Ele9}, {\tt Mu5\_Ele13},
353 claudioc 1.10 and {\tt Mu5\_Ele17\_V2}. The other triggers ({\tt Mu5\_Ele5},
354     {\tt Mu8\_Ele8}, and {\tt Mu5\_Ele17\_V1}) do not work very well.
355     We note that the working triggers are seeded at L1 by both Mu and EG.
356     On the other hand, {\tt Mu5\_Ele5} and {\tt Mu8\_Ele8} are only seeded
357     by Mu. We have since learned\cite{ref:harper} that the inefficiency
358     of these triggers is due to an HLT bug that has recently been understood.
359     The source of inefficiency of {\tt Mu5\_Ele17\_V1}
360     is not understood
361 claudioc 1.9 at the moment. Nevertheless, the working $e\mu$ triggers safely
362     cover the run ranges with the problematic $e\mu$ triggers.
363    
364     Thus, our key trigger model assumptions is verified, {\em i.e.}, the
365     muon trigger piece of the $e\mu$ trigger is at least as efficient
366 claudioc 1.10 as the single muon trigger.
367     %Note that if we calculate the efficiency
368     %relaxing the requirement on the single electron trigger, we find
369     %$e\mu$ trigger efficiencies of order 90\% instead of 100\% (for the
370     %working set of triggers). This must be due to the fact that we
371     %are measuring the efficiency on ``junk'' electrons, and the
372     %electron trigger efficiency on these electrons is not exactly
373     %100\% (the tag \& probe efficiency measurement on electrons from
374     %$Z \to ee$ gives essentially 100\%).