ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/appendix_trigger.tex
Revision: 1.2
Committed: Mon Nov 8 19:54:45 2010 UTC (14 years, 5 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
Changes since 1.1: +8 -8 lines
Log Message:
syst from derek, trg stuff from jae

File Contents

# User Rev Content
1 benhoob 1.1 %\appendix
2     \section{Trigger Efficiency Model}
3     \label{sec:appendix_trigger}
4    
5     As described in Section~\ref{sec:trigSel} we rely on a
6     mixture of single and double lepton triggers. The trigger
7     efficiency is very high because for most of the phase space
8     we have two leptons each of which can fire a single lepton
9     trigger -- and the single lepton triggers are very efficient.
10    
11     We apply to MC events a simplified model of the trigger efficiency
12     as a function of dilepton species ($ee$, $e\mu$, $\mu\mu$), the $P_T$
13     of the individual leptons, and, in the case of muons, the $|\eta|$
14     of the muons. We believe that this model is adequate for
15     the trigger efficiency precision needed for this analysis.
16    
17     The model assumptions are the following {\color{red} (The
18     xx below need to be fixed using the final JSON. For the 11 pb
19     iteration the trigger efficiency was taken as 100\%)}
20    
21     \begin{itemize}
22    
23     \item Muon and electron trigger turn-ons as a function of $P_T$
24     are infinitely sharp. {\color{red} Can we add references?}
25    
26     \item All electron triggers with no ID have 100\%
27     efficiency for electrons passing our analysis cuts. {\color{red}
28     Can we add a reference? Pehaps the top documentation?}
29    
30     \item Electron triggers with (Tight(er))CaloEleId have 100\%
31     efficiency with respect to our offline selection. This we
32     verified via tag-and-probe on $Z\to ee$.
33    
34     \item Electron triggers with EleId have somewhat lower
35     efficiency. This was also measured by tag-and-probe.
36    
37     \item The single muon trigger has zero efficiency for $|\eta|>2.1$.
38     This is conservative, the trigger efficiency here is of order
39     $\approx 40\%$.
40    
41     \item If a muon in $|\eta|>2.1$ fails the single muon trigger, it
42     will also fail the double muon trigger.
43    
44     \item The double muon trigger has efficiency
45     equal to the square of the single muon efficiency.
46    
47     \item The $e\mu$ triggers have no efficiency if the muon has $|\eta|>2.1$.
48    
49     \end{itemize}
50    
51     The model also uses some luminosity fractions and some trigger
52     efficiencies.
53    
54     \begin{itemize}
55    
56 claudioc 1.2 \item $\epsilon_{\mu}$=93\%, the single muon trigger efficiency plateau.
57 benhoob 1.1
58 claudioc 1.2 \item $f9$=0.215: fraction of data with the Mu9 trigger unprescaled.
59 benhoob 1.1 (run$\le 147116$).
60    
61 claudioc 1.2 \item $f11$=0.40 fraction of data with the Mu9 trigger prescaled and
62 benhoob 1.1 the Mu11 trigger unprescaled.
63     (147196 $\leq$ run $\leq$ 148058).
64    
65 claudioc 1.2 \item $e10$=0.002: fraction of data with the 10 GeV unprescaled electron triggers.
66 benhoob 1.1 (run$\le 139980$).
67    
68 claudioc 1.2 \item $e15$=0.086: fraction of data with the 15 GeV unprescaled electron triggers.
69 benhoob 1.1 (139980 $<$ run $\leq$ 144114).
70    
71 claudioc 1.2 \item $e17$=0.127: fraction of data with the 100\% efficient 17 GeV unprescaled electron triggers.
72 benhoob 1.1 (144114 $<$ run $\leq$ 147116).
73    
74 claudioc 1.2 \item $e17b$=0.273: fraction of data with 17 GeV unprescaled electron triggers
75 benhoob 1.1 with efficiency $\epsilon_e^b=90\%$ (as measured by tag-and-probe).
76     (147116 $<$ run $\leq$ 148058).
77    
78 claudioc 1.2 \item $emess$=0.512{\color{red}xx}: the remainder of the run with several different electron
79 benhoob 1.1 triggers, all of $P_T>17$ GeV. For this period we measure the
80     luminosity-weighted
81     trigger efficiency $\epsilon(P_T)$ via tag and probe to be 99\%
82     ($17<P_T<22$, 97\% ($22<P_T<27$), 98\% ($27<P_T<32$) and
83     100\% ($P_T>32$).
84    
85     \end{itemize}
86    
87     The full trigger efficiency model is described separately for
88     $ee$, $e\mu$, and $\mu\mu$.
89    
90     \subsection{$ee$ efficiency model}
91     \label{sec:eemodel}
92    
93     This is the easiest. Throughout the 2010 run we have always
94     had dielectron triggers with thresholds lower than our (20,10)
95     analysis thresholds. Since electron triggers are 100\% efficient,
96     the trigger efficiency for $ee$ is 100\%. We have verified that
97     the efficiency of the dielectron trigger is 100\% with respect
98     to the single electron trigger using $Z \to ee$ data.
99    
100     \subsection{$\mu\mu$ efficiency model}
101     \label{sec:mmmodel}
102    
103     We consider different cases.
104    
105     \subsubsection{Both muons in $|\eta|<2.1$ and with $P_T>15$ GeV}
106     This is the bulk of the $\mu\mu$.
107    
108     \begin{center}
109     $\epsilon = 1 - (1-\epsilon_{\mu})^2$
110     \end{center}
111    
112     \subsubsection{Both muons in $|\eta|<2.1$, one muon with $11<P_T<15$ GeV}
113     In this case there must be a muon with $P_T>20$ GeV. The single muon
114     trigger is operative for the full dataset on this muon. Some loss
115     of efficiency can be recovered when the 2nd muon fires the trigger.
116     But this can happen only for a fraction of the run. The dimuon trigger
117     cannot fire in our model to recover any of the efficiency lost by
118     the single muon trigger on the high $P_T$ muon.
119    
120     \begin{center}
121     $\epsilon = \epsilon_{\mu} + (1-\epsilon_{\mu})\epsilon_{\mu}(f9+f11)$
122     \end{center}
123    
124     \subsubsection{Both muons in $|\eta|<2.1$, one muon with $10<P_T<11$ GeV}
125     Same basic idea as above.
126    
127     \begin{center}
128     $\epsilon = \epsilon_{\mu} + (1-\epsilon_{\mu})\epsilon_{\mu}f9$
129     \end{center}
130    
131     \subsubsection{Both muons with $|\eta|>2.1$}
132     This is a very small fraction of events. In our model they can only be
133     triggered by the dimuon trigger.
134    
135     \begin{center}
136     $\epsilon = \epsilon_{\mu}^2$
137     \end{center}
138    
139     \subsubsection{First muon with $P_T>15$ and $|\eta|<2.1$; second muon
140     with $|\eta|>2.1$}
141     The single muon trigger is always operative. If it fails the double muon
142     trigger also fails.
143    
144     \begin{center}
145     $\epsilon = \epsilon_{\mu}$
146     \end{center}
147    
148     \subsubsection{First muon with $11<P_T<15$ and $|\eta|<2.1$; second muon
149     with $|\eta|>2.1$}
150     The single muon trigger is operative only for a fraction of the run.
151     For the remaining fraction, we must rely on the double muon trigger.
152    
153     \begin{center}
154     $\epsilon = (f9+f11)\epsilon_{\mu} + (1-f9-f11)\epsilon_{\mu}^2$
155     \end{center}
156    
157     \subsubsection{First muon with $10<P_T<11$ and $|\eta|<2.1$; second muon
158     with $|\eta|>2.1$}
159     Same basic idea as above.
160    
161     \begin{center}
162     $\epsilon = f9~\epsilon_{\mu} + (1-f9)\epsilon_{\mu}^2$
163     \end{center}
164    
165     \subsection{$e\mu$ efficiency model}
166     \label{sec:emumodel}
167    
168     This is the most complicated case. The idea is that the muon trigger
169     is used to get the bulk of the efficiency. Then the single electron
170     trigger(s) and the $e\mu$ triggers are used to get back dome of the
171     efficiency loss. The various cases are listed below.
172    
173     \subsubsection{Muon with $|\eta|<2.1$ and $P_T>15$}
174     This is the bulk of the acceptance.
175    
176     \begin{center}
177     $\epsilon = \epsilon_{\mu} + (1-\epsilon_{\mu})\Delta_1$
178     \end{center}
179    
180     where $\Delta_1$ is the efficiency from the electron trigger:
181     \begin{itemize}
182     \item $P_T(ele)<15 \to \Delta_1=e10$
183     \item $15<P_T(ele)<17 \to \Delta_1=e10+e15$
184     \item $P_T(ele)>15 \to \Delta_1=e10+e15+e17+\epsilon_e^b~e17b+\epsilon(P_T)~emess$
185     \end{itemize}
186    
187    
188     \subsubsection{Muon with $|\eta|<2.1$ and $11<P_T>15$}
189    
190     This is the similar to the previous case, except that the muon
191     trigger is operative only for a subset of the data taking period.
192    
193     \begin{center}
194     $\epsilon = (f11+f9)\epsilon_{\mu} + \Delta_2 + \Delta_3$
195     \end{center}
196    
197     Here $\Delta_2$ is associated with the period where the muon
198     trigger was at 15 GeV, in which case we use electron triggers or
199     $e\mu$ triggers. Note that the electron in this case must be
200     above 20 GeV. This can happen only in the latter part of the run,
201     thus we write
202     \begin{center}
203     $\Delta_2 = (1-f11-f9)~(\epsilon_{\mu}~+~
204     (1-\epsilon_{\mu})\epsilon(P_T))$
205     \end{center}
206     \noindent where the first term is for the $e\mu$ trigger and the
207     second term corresponds to $e\mu$ trigger failures, in which case we have
208     to rely on the electron trigger.
209    
210     Then, $\Delta_3$ is associated with muon trigger failures in early runs,
211     {\em i.e.}, run $<148819$. In this case the electron trigger picks it
212     up and the $e\mu$ trigger does not help.
213    
214     \begin{center}
215     $\Delta_3 = (f11+f9)(1-\epsilon_{\mu}) \cdot \epsilon_e$
216     \end{center}
217    
218     \noindent where $\epsilon_e$ is the efficiency of the electron
219     trigger for $P_T>20$. This is 100\% up to run 147716 (fraction
220     $(e10_e15+e17)/(f11+f9)$; then it is somewhat lower up to
221     run 148058, then it becomes very close to 100\% again.
222     For this latter part of the run we approximate it as $\epsilon_e^b$.
223     Thus:
224    
225     \begin{center}
226     $\epsilon_e = (e10_e15+e17)/(f11+f9) +
227     \epsilon_e^b(f11+f9-e10-e15-e17)/(f11+f9)$
228     \end{center}
229    
230     \subsubsection{Muon with $|\eta|<2.1$ and $9<P_T>11$}
231    
232     Identical to the previous case, but replace $(f11+f9)$ with $f9$ everywhere.
233    
234     \subsubsection{Muon with $|\eta|>2.1$}
235    
236     This is a 10\% effect to start with. We assume no single muon efficiency,
237     no $e\mu$ efficiency. Then we can only ise the single electron trigger.
238    
239     \begin{center}
240     $\epsilon = \Delta_1$
241     \end{center}
242    
243     \subsection{Summary of the trigger efficiency model}
244     \label{sec:trgeffsum}
245    
246     We take the trigger efficiency for $ee$ as 100\%. The trigger efficiency
247     for the $e\mu$ and $\mu\mu$ final states is summarized in Figures xx.
248     We estimate the systematic uncertainties on the trigger modeling
249     to be at the few percent level.
250    
251     \noindent {\color{red}Figure xx will be a two dimensional table of the
252     trigger efficiency as a function of the pt of the two leptons.
253     We need to wait for the xx in the previous section to be completes before we can
254     fill out this table.}