ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/appendix_trigger.tex
Revision: 1.5
Committed: Tue Nov 9 18:50:45 2010 UTC (14 years, 5 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
Changes since 1.4: +24 -19 lines
Log Message:
trigger model changes

File Contents

# User Rev Content
1 benhoob 1.1 %\appendix
2     \section{Trigger Efficiency Model}
3     \label{sec:appendix_trigger}
4    
5     As described in Section~\ref{sec:trigSel} we rely on a
6     mixture of single and double lepton triggers. The trigger
7     efficiency is very high because for most of the phase space
8     we have two leptons each of which can fire a single lepton
9     trigger -- and the single lepton triggers are very efficient.
10    
11     We apply to MC events a simplified model of the trigger efficiency
12     as a function of dilepton species ($ee$, $e\mu$, $\mu\mu$), the $P_T$
13     of the individual leptons, and, in the case of muons, the $|\eta|$
14     of the muons. We believe that this model is adequate for
15     the trigger efficiency precision needed for this analysis.
16    
17 claudioc 1.3 The model assumptions are the following:
18 benhoob 1.1
19     \begin{itemize}
20    
21     \item Muon and electron trigger turn-ons as a function of $P_T$
22     are infinitely sharp. {\color{red} Can we add references?}
23    
24     \item All electron triggers with no ID have 100\%
25     efficiency for electrons passing our analysis cuts. {\color{red}
26     Can we add a reference? Pehaps the top documentation?}
27    
28     \item Electron triggers with (Tight(er))CaloEleId have 100\%
29     efficiency with respect to our offline selection. This we
30     verified via tag-and-probe on $Z\to ee$.
31    
32     \item Electron triggers with EleId have somewhat lower
33     efficiency. This was also measured by tag-and-probe.
34    
35 claudioc 1.4 \item The single muon trigger has 50\% efficiency for
36     $|\eta|>2.1$~\cite{ref:evans}.
37 benhoob 1.1
38 claudioc 1.5 \item If a muon in fails the single muon trigger, it
39     will also fail the double muon trigger. This is actually
40     a conservative assumption.
41 benhoob 1.1
42     \item The double muon trigger has efficiency
43 claudioc 1.5 equal to the square of the single muon efficiency. This is
44     also a conservative assumption.
45 benhoob 1.1
46     \item The $e\mu$ triggers have no efficiency if the muon has $|\eta|>2.1$.
47 claudioc 1.5 Again, this is conservative.
48 benhoob 1.1 \end{itemize}
49    
50     The model also uses some luminosity fractions and some trigger
51     efficiencies.
52    
53     \begin{itemize}
54    
55 claudioc 1.4 \item $\epsilon_{\mu}$=93\%, the single muon trigger efficiency plateau
56     for $|\eta|<2.1$~\cite{ref:evans};
57    
58 claudioc 1.5 \item $\epsilon'_{\mu}$=40\%, the single muon trigger efficiency plateau
59 claudioc 1.4 for $|\eta|>2.1$~\cite{ref:evans};
60 benhoob 1.1
61 claudioc 1.2 \item $f9$=0.215: fraction of data with the Mu9 trigger unprescaled.
62 benhoob 1.1 (run$\le 147116$).
63    
64 claudioc 1.4 \item $f11$=0.273 fraction of data with the Mu9 trigger prescaled and
65 benhoob 1.1 the Mu11 trigger unprescaled.
66     (147196 $\leq$ run $\leq$ 148058).
67    
68 claudioc 1.2 \item $e10$=0.002: fraction of data with the 10 GeV unprescaled electron triggers.
69 benhoob 1.1 (run$\le 139980$).
70    
71 claudioc 1.2 \item $e15$=0.086: fraction of data with the 15 GeV unprescaled electron triggers.
72 benhoob 1.1 (139980 $<$ run $\leq$ 144114).
73    
74 claudioc 1.2 \item $e17$=0.127: fraction of data with the 100\% efficient 17 GeV unprescaled electron triggers.
75 benhoob 1.1 (144114 $<$ run $\leq$ 147116).
76    
77 claudioc 1.2 \item $e17b$=0.273: fraction of data with 17 GeV unprescaled electron triggers
78 benhoob 1.1 with efficiency $\epsilon_e^b=90\%$ (as measured by tag-and-probe).
79     (147116 $<$ run $\leq$ 148058).
80    
81 claudioc 1.3 \item $emess$=0.512: the remainder of the run with several different electron
82 benhoob 1.1 triggers, all of $P_T>17$ GeV. For this period we measure the
83     luminosity-weighted
84     trigger efficiency $\epsilon(P_T)$ via tag and probe to be 99\%
85     ($17<P_T<22$, 97\% ($22<P_T<27$), 98\% ($27<P_T<32$) and
86     100\% ($P_T>32$).
87    
88     \end{itemize}
89    
90     The full trigger efficiency model is described separately for
91     $ee$, $e\mu$, and $\mu\mu$.
92    
93     \subsection{$ee$ efficiency model}
94     \label{sec:eemodel}
95    
96     This is the easiest. Throughout the 2010 run we have always
97     had dielectron triggers with thresholds lower than our (20,10)
98 claudioc 1.4 analysis thresholds. Since electron triggers are very close
99     to 100\% efficient\cite{ref:evans},
100 benhoob 1.1 the trigger efficiency for $ee$ is 100\%. We have verified that
101     the efficiency of the dielectron trigger is 100\% with respect
102     to the single electron trigger using $Z \to ee$ data.
103    
104     \subsection{$\mu\mu$ efficiency model}
105     \label{sec:mmmodel}
106    
107     We consider different cases.
108    
109     \subsubsection{Both muons in $|\eta|<2.1$ and with $P_T>15$ GeV}
110     This is the bulk of the $\mu\mu$.
111    
112     \begin{center}
113     $\epsilon = 1 - (1-\epsilon_{\mu})^2$
114     \end{center}
115    
116     \subsubsection{Both muons in $|\eta|<2.1$, one muon with $11<P_T<15$ GeV}
117     In this case there must be a muon with $P_T>20$ GeV. The single muon
118     trigger is operative for the full dataset on this muon. Some loss
119     of efficiency can be recovered when the 2nd muon fires the trigger.
120     But this can happen only for a fraction of the run. The dimuon trigger
121     cannot fire in our model to recover any of the efficiency lost by
122     the single muon trigger on the high $P_T$ muon.
123    
124     \begin{center}
125     $\epsilon = \epsilon_{\mu} + (1-\epsilon_{\mu})\epsilon_{\mu}(f9+f11)$
126     \end{center}
127    
128     \subsubsection{Both muons in $|\eta|<2.1$, one muon with $10<P_T<11$ GeV}
129     Same basic idea as above.
130    
131     \begin{center}
132     $\epsilon = \epsilon_{\mu} + (1-\epsilon_{\mu})\epsilon_{\mu}f9$
133     \end{center}
134    
135     \subsubsection{Both muons with $|\eta|>2.1$}
136 claudioc 1.4 This is a very small fraction of events.
137     %In our model they can only be triggered by the dimuon trigger.
138 benhoob 1.1
139     \begin{center}
140 claudioc 1.4 $\epsilon = \epsilon_{\mu}^2 + \alpha (1-\epsilon_{\mu}) \epsilon'_{\mu}$
141 benhoob 1.1 \end{center}
142    
143 claudioc 1.4 \noindent where $\alpha=2$ if both muons are above 15 GeV, $\alpha=(1+f9+f11)$ if
144     one of the muons is between 11 and 15 GeV, and $\alpha=(1+f9)$ if one of the muon
145     is below 11 GeV.
146    
147 benhoob 1.1 \subsubsection{First muon with $P_T>15$ and $|\eta|<2.1$; second muon
148     with $|\eta|>2.1$}
149     The single muon trigger is always operative. If it fails the double muon
150     trigger also fails.
151    
152     \begin{center}
153 claudioc 1.4 $\epsilon = \epsilon_{\mu} + (1-\epsilon_{\mu})\Delta_{\mu}$
154     \end{center}
155    
156     \noindent where
157    
158     \begin{center}
159     $\Delta_{\mu} = \epsilon'_{\mu}$ ~~~~(2nd muon with $P_T \geq 15$ GeV) \\
160     $\Delta_{\mu} = (f9+f11)\epsilon'_{\mu}$ ~~~~(2nd muon with $11 \leq P_T < 15$ GeV) \\
161     $\Delta_{\mu} = f9\epsilon'_{\mu}$ ~~~~(2nd muon with $9 \leq P_T < 11$ GeV) \\
162 benhoob 1.1 \end{center}
163    
164 claudioc 1.4
165 benhoob 1.1 \subsubsection{First muon with $11<P_T<15$ and $|\eta|<2.1$; second muon
166 claudioc 1.4 with $|\eta|>2.1$ and $P_T>20$}
167     The single muon trigger at low $\eta$ is fully operative only for a fraction of the run,
168     this efficiency is captured by the first term below.
169     For the remaining fraction, we rely on the double muon trigger as well as the
170     single muon trigger at high $\eta$ (2nd term in the equation).
171    
172     \begin{center}
173     $\epsilon = (f9+f11)(\epsilon_{\mu} + (1-\epsilon_{\mu})\epsilon'_{\mu})
174     + (1-f9-f11)(\epsilon_{\mu}^2 + (1-\epsilon_{\mu})\epsilon'_{\mu})$
175     \end{center}
176    
177     \noindent which reduces to
178 benhoob 1.1
179     \begin{center}
180 claudioc 1.4 $\epsilon = (f9+f11)\epsilon_{\mu} + (1-f9-f11)\epsilon_{\mu}^2
181     + (1-\epsilon_{\mu})\epsilon'_{\mu}$
182 benhoob 1.1 \end{center}
183    
184     \subsubsection{First muon with $10<P_T<11$ and $|\eta|<2.1$; second muon
185 claudioc 1.4 with $|\eta|>2.1$ and $P_T>20$}
186 benhoob 1.1 Same basic idea as above.
187    
188     \begin{center}
189 claudioc 1.4 % $\epsilon = f9~\epsilon_{\mu} + (1-f9)\epsilon_{\mu}^2$
190     $\epsilon = f9\epsilon_{\mu} + (1-f9)\epsilon_{\mu}^2
191     + (1-\epsilon_{\mu})\epsilon'_{\mu}$
192 benhoob 1.1 \end{center}
193    
194     \subsection{$e\mu$ efficiency model}
195     \label{sec:emumodel}
196    
197     This is the most complicated case. The idea is that the muon trigger
198     is used to get the bulk of the efficiency. Then the single electron
199     trigger(s) and the $e\mu$ triggers are used to get back dome of the
200     efficiency loss. The various cases are listed below.
201    
202     \subsubsection{Muon with $|\eta|<2.1$ and $P_T>15$}
203     This is the bulk of the acceptance.
204    
205     \begin{center}
206     $\epsilon = \epsilon_{\mu} + (1-\epsilon_{\mu})\Delta_1$
207     \end{center}
208    
209     where $\Delta_1$ is the efficiency from the electron trigger:
210     \begin{itemize}
211     \item $P_T(ele)<15 \to \Delta_1=e10$
212     \item $15<P_T(ele)<17 \to \Delta_1=e10+e15$
213     \item $P_T(ele)>15 \to \Delta_1=e10+e15+e17+\epsilon_e^b~e17b+\epsilon(P_T)~emess$
214     \end{itemize}
215    
216    
217     \subsubsection{Muon with $|\eta|<2.1$ and $11<P_T>15$}
218    
219     This is the similar to the previous case, except that the muon
220     trigger is operative only for a subset of the data taking period.
221    
222     \begin{center}
223     $\epsilon = (f11+f9)\epsilon_{\mu} + \Delta_2 + \Delta_3$
224     \end{center}
225    
226     Here $\Delta_2$ is associated with the period where the muon
227     trigger was at 15 GeV, in which case we use electron triggers or
228     $e\mu$ triggers. Note that the electron in this case must be
229     above 20 GeV. This can happen only in the latter part of the run,
230     thus we write
231     \begin{center}
232     $\Delta_2 = (1-f11-f9)~(\epsilon_{\mu}~+~
233     (1-\epsilon_{\mu})\epsilon(P_T))$
234     \end{center}
235     \noindent where the first term is for the $e\mu$ trigger and the
236     second term corresponds to $e\mu$ trigger failures, in which case we have
237     to rely on the electron trigger.
238    
239     Then, $\Delta_3$ is associated with muon trigger failures in early runs,
240     {\em i.e.}, run $<148819$. In this case the electron trigger picks it
241     up and the $e\mu$ trigger does not help.
242    
243     \begin{center}
244     $\Delta_3 = (f11+f9)(1-\epsilon_{\mu}) \cdot \epsilon_e$
245     \end{center}
246    
247     \noindent where $\epsilon_e$ is the efficiency of the electron
248     trigger for $P_T>20$. This is 100\% up to run 147716 (fraction
249     $(e10_e15+e17)/(f11+f9)$; then it is somewhat lower up to
250     run 148058, then it becomes very close to 100\% again.
251     For this latter part of the run we approximate it as $\epsilon_e^b$.
252     Thus:
253    
254     \begin{center}
255     $\epsilon_e = (e10_e15+e17)/(f11+f9) +
256     \epsilon_e^b(f11+f9-e10-e15-e17)/(f11+f9)$
257     \end{center}
258    
259     \subsubsection{Muon with $|\eta|<2.1$ and $9<P_T>11$}
260    
261     Identical to the previous case, but replace $(f11+f9)$ with $f9$ everywhere.
262    
263     \subsubsection{Muon with $|\eta|>2.1$}
264    
265 claudioc 1.4 This is a 10\% effect to start with.
266     The first term is from the electron efficiency. The 2nd term is the correction
267     due to the single muon efficieny.
268 benhoob 1.1
269     \begin{center}
270 claudioc 1.4 $\epsilon = \Delta_1 + (1-\Delta_1)\Delta_{\mu}$
271 benhoob 1.1 \end{center}
272    
273     \subsection{Summary of the trigger efficiency model}
274     \label{sec:trgeffsum}
275    
276     We take the trigger efficiency for $ee$ as 100\%. The trigger efficiency
277 claudioc 1.3 for the $e\mu$ and $\mu\mu$ final states is summarized in
278 claudioc 1.5 Figures~\ref{fig:emuModel} and~\ref{fig:mumuModel}.
279 benhoob 1.1 We estimate the systematic uncertainties on the trigger modeling
280     to be at the few percent level.
281    
282 claudioc 1.5 \begin{figure}[htb]
283     \begin{center}
284     \includegraphics[width=0.99\linewidth]{emuModel.png}
285     \caption{\label{fig:emuModel}\protect Trigger efficiency for the
286     $e\mu$ pair as a function of the $P_T$ of the two leptons.
287     The top table corresponds to $|\eta(\mu)| < 2.1$, the bottom
288     table to $|\eta(\mu)| > 2.1$.}
289     \end{center}
290     \end{figure}
291     \clearpage
292    
293 claudioc 1.3
294     \begin{figure}[tbh]
295     \begin{center}
296 claudioc 1.5 \includegraphics[width=0.99\linewidth]{mumuModel.png}
297     \includegraphics[width=0.99\linewidth]{mumu24Model.png}
298 claudioc 1.3 \caption{\label{fig:mumuModel}\protect Trigger efficiency for the
299     $\mu\mu$ pair as a function of the $P_T$ of the two muons.
300     The top table corresponds to both muons having $|\eta| < 2.1$;
301 claudioc 1.5 the middle table has one of the muon with $|\eta|<2.1$ and the
302     other muon with $|\eta|>2.1$; the bottom table has both muons with
303     have $|\eta|>2.1$.}
304 claudioc 1.3 \end{center}
305     \end{figure}
306    
307     \clearpage