ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
Revision: 1.1
Committed: Thu Oct 28 05:28:08 2010 UTC (14 years, 6 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
Log Message:
first

File Contents

# User Rev Content
1 claudioc 1.1 \section{Data Driven Background Estimation Methods}
2     \label{sec:datadriven}
3     We have developed two data-driven methods to
4     estimate the background in the signal region.
5     The first one explouts the fact that
6     \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
7     uncorrelated for the $t\bar{t}$ background
8     (Section~\ref{sec:abcd}); the second one
9     is based on the fact that in $t\bar{t}$ the
10     $P_T$ of the dilepton pair is on average
11     nearly the same as the $P_T$ of the pair of neutrinos
12     from $W$-decays, which is reconstructed as \met in the
13     detector.
14    
15     in 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
16     the signal region. The expectations from the LMO
17     and LM1 SUSY benchmark points are {\color{red} XX} and
18     {\color{red} XX} events respectively.
19    
20    
21     \subsection{ABCD method}
22     \label{sec:abcd}
23    
24     We find that in $t\bar{t}$ events \met and
25     \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated.
26     This is demonstrated in Figure~\ref{fig:uncor}.
27     Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28     sumJetPt plane to estimate the background in a data driven way.
29    
30     \begin{figure}[htb]
31     \begin{center}
32     \includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
33     \caption{\label{fig:uncor}\protect Distributions of SumJetPt
34     in MC $t\bar{t}$ events for different intervals of
35     MET$/\sqrt{\rm SumJetPt}$.}
36     \end{center}
37     \end{figure}
38    
39     \begin{figure}[htb]
40     \begin{center}
41     \includegraphics[width=0.75\linewidth]{abcdMC.jpg}
42     \caption{\label{fig:abcdMC}\protect Distributions of SumJetPt
43     vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo. Here we also
44     show our choice of ABCD regions. {\color{red} We need a better
45     picture with the letters A-B-C-D and with the numerical values
46     of the boundaries clearly indicated.}}
47     \end{center}
48     \end{figure}
49    
50    
51     Our choice of ABCD regions is shown in Figure~\ref{fig:abcdMC}.
52     The signal region is region D. The expected number of events
53     in the four regions for the SM Monte Carlo, as well as the BG
54     prediction AC/B is given in Table~\ref{tab:abcdMC} for an integrated
55     luminosity of 30 pb$^{-1}$. The ABCD method is accurate
56     to about 10\%.
57    
58     \begin{table}[htb]
59     \begin{center}
60     \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
61     30 pb$^{-1}$ in the ABCD regions.}
62     \begin{tabular}{|l|c|c|c|c||c|}
63     \hline
64     Sample & A & B & C & D & AC/D \\ \hline
65     ttdil & 6.4 & 28.4 & 4.2 & 1.0 & 0.9 \\
66     Zjets & 0.0 & 1.3 & 0.2 & 0.0 & 0.0 \\
67     Other SM & 0.6 & 2.1 & 0.2 & 0.1 & 0.0 \\ \hline
68     total MC & 7.0 & 31.8 & 4.5 & 1.1 & 1.0 \\ \hline
69     \end{tabular}
70     \end{center}
71     \end{table}
72    
73    
74    
75