ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
Revision: 1.29
Committed: Thu Dec 2 15:04:23 2010 UTC (14 years, 5 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
Changes since 1.28: +10 -8 lines
Log Message:
Updates

File Contents

# User Rev Content
1 claudioc 1.1 \section{Data Driven Background Estimation Methods}
2     \label{sec:datadriven}
3     We have developed two data-driven methods to
4     estimate the background in the signal region.
5 benhoob 1.10 The first one exploits the fact that
6 benhoob 1.22 SumJetPt and \met$/\sqrt{\rm SumJetPt}$ are nearly
7 claudioc 1.1 uncorrelated for the $t\bar{t}$ background
8     (Section~\ref{sec:abcd}); the second one
9     is based on the fact that in $t\bar{t}$ the
10     $P_T$ of the dilepton pair is on average
11     nearly the same as the $P_T$ of the pair of neutrinos
12     from $W$-decays, which is reconstructed as \met in the
13     detector.
14    
15 benhoob 1.15
16 claudioc 1.6 %{\color{red} I took these
17     %numbers from the twiki, rescaling from 11.06 to 30/pb.
18     %They seem too large...are they really right?}
19 claudioc 1.1
20    
21     \subsection{ABCD method}
22     \label{sec:abcd}
23    
24 benhoob 1.22 We find that in $t\bar{t}$ events SumJetPt and
25 benhoob 1.16 \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26     as demonstrated in Figure~\ref{fig:uncor}.
27 claudioc 1.1 Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28     sumJetPt plane to estimate the background in a data driven way.
29    
30 benhoob 1.24 %\begin{figure}[bht]
31     %\begin{center}
32     %\includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
33     %\caption{\label{fig:uncor}\protect Distributions of SumJetPt
34     %in MC $t\bar{t}$ events for different intervals of
35     %MET$/\sqrt{\rm SumJetPt}$.}
36     %\end{center}
37     %\end{figure}
38    
39 claudioc 1.21 \begin{figure}[bht]
40 claudioc 1.1 \begin{center}
41 benhoob 1.24 \includegraphics[width=0.75\linewidth]{uncor.png}
42 claudioc 1.1 \caption{\label{fig:uncor}\protect Distributions of SumJetPt
43     in MC $t\bar{t}$ events for different intervals of
44 benhoob 1.24 MET$/\sqrt{\rm SumJetPt}$. h1, h2, and h3 refer to the MET$/\sqrt{\rm SumJetPt}$
45     intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively.}
46 claudioc 1.1 \end{center}
47     \end{figure}
48    
49 claudioc 1.21 \begin{figure}[tb]
50 claudioc 1.1 \begin{center}
51 claudioc 1.3 \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
52 benhoob 1.22 \caption{\label{fig:abcdMC}\protect Distributions of MET$/\sqrt{\rm SumJetPt}$ vs.
53     SumJetPt for SM Monte Carlo. Here we also show our choice of ABCD regions.}
54 claudioc 1.1 \end{center}
55     \end{figure}
56    
57    
58     Our choice of ABCD regions is shown in Figure~\ref{fig:abcdMC}.
59     The signal region is region D. The expected number of events
60 benhoob 1.29 in the four regions for the SM Monte Carlo, as well as the background
61     prediction A $\times$ C / B are given in Table~\ref{tab:abcdMC} for an integrated
62 benhoob 1.24 luminosity of 35 pb$^{-1}$. The ABCD method with chosen boundaries is accurate
63 benhoob 1.29 to about 20\%, and we assess a corresponding systematic uncertainty.
64    
65     %As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties
66     %by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty,
67     %which we take as $\pm$5\% for SumJetPt and $\pm$2.5\% for MET/$\sqrt{\rm SumJetPt}$, since the
68     %uncertainty on this quantity partially cancels due to the fact that it is a ratio of correlated
69     %quantities. Based on these studies we assess a correction factor $k_{ABCD} = 1.2 \pm 0.2$ to the
70     %predicted yield using the ABCD method.
71 benhoob 1.24
72    
73 claudioc 1.9 %{\color{red} Avi wants some statement about stability
74     %wrt changes in regions. I am not sure that we have done it and
75     %I am not sure it is necessary (Claudio).}
76 claudioc 1.1
77 claudioc 1.21 \begin{table}[ht]
78 claudioc 1.1 \begin{center}
79     \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
80 benhoob 1.13 35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
81 benhoob 1.16 the signal region given by A $\times$ C / B. Here `SM other' is the sum
82 benhoob 1.13 of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
83     $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
84 benhoob 1.16 \begin{tabular}{lccccc}
85 benhoob 1.13 \hline
86 benhoob 1.27 sample & A & B & C & D & A $\times$ C / B \\
87 benhoob 1.13 \hline
88 benhoob 1.27 $t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 8.27 $\pm$ 0.18 & 32.16 $\pm$ 0.35 & 4.69 $\pm$ 0.13 & 1.05 $\pm$ 0.06 & 1.21 $\pm$ 0.04 \\
89     $Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.22 $\pm$ 0.11 & 1.54 $\pm$ 0.29 & 0.05 $\pm$ 0.05 & 0.16 $\pm$ 0.09 & 0.01 $\pm$ 0.01 \\
90     SM other & 0.54 $\pm$ 0.03 & 2.28 $\pm$ 0.12 & 0.23 $\pm$ 0.03 & 0.07 $\pm$ 0.01 & 0.05 $\pm$ 0.01 \\
91 benhoob 1.25 \hline
92 benhoob 1.27 total SM MC & 9.03 $\pm$ 0.21 & 35.97 $\pm$ 0.46 & 4.97 $\pm$ 0.15 & 1.29 $\pm$ 0.11 & 1.25 $\pm$ 0.05 \\
93 claudioc 1.1 \hline
94     \end{tabular}
95     \end{center}
96     \end{table}
97    
98 benhoob 1.24
99    
100     \begin{table}[ht]
101     \begin{center}
102 benhoob 1.27 \caption{\label{tab:abcdsyst}
103     {\bf \color{red} Do we need this study at all? Observed/predicted is consistent within stat uncertainties as the boundaries are varied- is it enough to simply state this fact in the text??? }
104     Results of the systematic study of the ABCD method by varying the boundaries
105 benhoob 1.24 between the ABCD regions shown in Fig.~\ref{fig:abcdMC}. Here $x_1$ is the lower SumJetPt boundary and
106     $x_2$ is the boundary separating regions A and B from C and D, their nominal values are 125 and 300~GeV,
107     respectively. $y_1$ is the lower MET/$\sqrt{\rm SumJetPt}$ boundary and
108     $y_2$ is the boundary separating regions B and C from A and D, their nominal values are 4.5 and 8.5~GeV$^{1/2}$,
109     respectively.}
110     \begin{tabular}{cccc|c}
111     \hline
112     $x_1$ & $x_2$ & $y_1$ & $y_2$ & Observed/Predicted \\
113     \hline
114 benhoob 1.26 nominal & nominal & nominal & nominal & $1.20 \pm 0.12$ \\
115     +5\% & +5\% & +2.5\% & +2.5\% & $1.38 \pm 0.15$ \\
116     +5\% & +5\% & nominal & nominal & $1.31 \pm 0.14$ \\
117     nominal & nominal & +2.5\% & +2.5\% & $1.25 \pm 0.13$ \\
118     nominal & +5\% & nominal & +2.5\% & $1.32 \pm 0.14$ \\
119     nominal & -5\% & nominal & -2.5\% & $1.16 \pm 0.09$ \\
120     -5\% & -5\% & +2.5\% & +2.5\% & $1.21 \pm 0.11$ \\
121     +5\% & +5\% & -2.5\% & -2.5\% & $1.26 \pm 0.12$ \\
122 benhoob 1.24 \hline
123     \end{tabular}
124     \end{center}
125     \end{table}
126    
127 claudioc 1.2 \subsection{Dilepton $P_T$ method}
128     \label{sec:victory}
129     This method is based on a suggestion by V. Pavlunin\cite{ref:victory},
130     and was investigated by our group in 2009\cite{ref:ourvictory}.
131     The idea is that in dilepton $t\bar{t}$ events the lepton and neutrinos
132     from $W$ decays have the same $P_T$ spectrum (modulo $W$ polarization
133     effects). One can then use the observed
134     $P_T(\ell\ell)$ distribution to model the sum of neutrino $P_T$'s which
135     is identified with the \met.
136    
137     Then, in order to predict the $t\bar{t} \to$ dilepton contribution to a
138     selection with \met$+$X, one applies a cut on $P_T(\ell\ell)+$X instead.
139     In practice one has to rescale the result of the $P_T(\ell\ell)+$X selection
140     to account for the fact that any dilepton selection must include a
141     moderate \met cut in order to reduce Drell Yan backgrounds. This
142     is discussed in Section 5.3 of Reference~\cite{ref:ourvictory}; for a \met
143 benhoob 1.16 cut of 50 GeV, the rescaling factor is obtained from the MC as
144 claudioc 1.2
145     \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
146     \begin{center}
147     $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~}$
148     \end{center}
149    
150    
151     Monte Carlo studies give values of $K$ that are typically between 1.5 and 1.6,
152 benhoob 1.10 depending on selection details.
153     %%%TO BE REPLACED
154     %Given the integrated luminosity of the
155     %present dataset, the determination of $K$ in data is severely statistics
156     %limited. Thus, we take $K$ from $t\bar{t}$ Monte Carlo as
157    
158     %\begin{center}
159     %$ K_{MC} = \frac{\int_0^{\infty} {\cal N}(\met)~~d\met~}{\int_{50}^{\infty} {\cal N}(\met)~~d\met~}$
160     %\end{center}
161 claudioc 1.9
162 benhoob 1.10 %\noindent {\color{red} For the 11 pb result we have used $K$ from data.}
163 claudioc 1.2
164     There are several effects that spoil the correspondance between \met and
165     $P_T(\ell\ell)$:
166     \begin{itemize}
167     \item $Ws$ in top events are polarized. Neutrinos are emitted preferentially
168 benhoob 1.22 parallel to the $W$ velocity while charged leptons are emitted prefertially
169     anti-parallel. Thus the $P_T(\nu\nu)$ distribution is harder
170 claudioc 1.2 than the $P_T(\ell\ell)$ distribution for top dilepton events.
171     \item The lepton selections results in $P_T$ and $\eta$ cuts on the individual
172     leptons that have no simple correspondance to the neutrino requirements.
173     \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
174     neutrinos which is only partially compensated by the $K$ factor above.
175     \item The \met resolution is much worse than the dilepton $P_T$ resolution.
176 benhoob 1.16 When convoluted with a falling spectrum in the tails of \met, this results
177 claudioc 1.2 in a harder spectrum for \met than the original $P_T(\nu\nu)$.
178     \item The \met response in CMS is not exactly 1. This causes a distortion
179     in the \met distribution that is not present in the $P_T(\ell\ell)$ distribution.
180     \item The $t\bar{t} \to$ dilepton signal includes contributions from
181     $W \to \tau \to \ell$. For these events the arguments about the equivalence
182     of $P_T(\ell\ell)$ and $P_T(\nu\nu)$ do not apply.
183     \item A dilepton selection will include SM events from non $t\bar{t}$
184     sources. These events can affect the background prediction. Particularly
185     dangerous are high $P_T$ Drell Yan events that barely pass the \met$>$ 50
186     GeV selection. They will tend to push the data-driven background prediction up.
187 benhoob 1.16 Therefore we estimate the number of DY events entering the background prediction
188     using the $R_{out/in}$ method as described in Sec.~\ref{sec:othBG}.
189 claudioc 1.2 \end{itemize}
190    
191     We have studied these effects in SM Monte Carlo, using a mixture of generator and
192     reconstruction level studies, putting the various effects in one at a time.
193     For each configuration, we apply the data-driven method and report as figure
194     of merit the ratio of observed and predicted events in the signal region.
195     The results are summarized in Table~\ref{tab:victorybad}.
196    
197     \begin{table}[htb]
198     \begin{center}
199 benhoob 1.27 \caption{\label{tab:victorybad}
200 benhoob 1.28 {\bf \color{red} Need to either update this with 38X MC or remove it }
201 benhoob 1.27 Test of the data driven method in Monte Carlo
202 claudioc 1.2 under different assumptions. See text for details.}
203 claudioc 1.6 \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
204 claudioc 1.2 \hline
205 claudioc 1.6 & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or & Lepton $P_T$ & Z veto & \met $>$ 50& obs/pred \\
206 benhoob 1.28 & included & included & included & RECOSIM & and $\eta$ cuts & & & \\ \hline
207 claudioc 1.6 1&Y & N & N & GEN & N & N & N & 1.90 \\
208     2&Y & N & N & GEN & Y & N & N & 1.64 \\
209     3&Y & N & N & GEN & Y & Y & N & 1.59 \\
210     4&Y & N & N & GEN & Y & Y & Y & 1.55 \\
211     5&Y & N & N & RECOSIM & Y & Y & Y & 1.51 \\
212     6&Y & Y & N & RECOSIM & Y & Y & Y & 1.58 \\
213 benhoob 1.17 7&Y & Y & Y & RECOSIM & Y & Y & Y & 1.38 \\
214 claudioc 1.2 \hline
215     \end{tabular}
216     \end{center}
217     \end{table}
218    
219    
220 benhoob 1.28 \begin{table}[htb]
221     \begin{center}
222     \caption{\label{tab:victorysyst}
223     {Summary of uncertainties in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton.
224     In the first table, `up' and `down' refer to shifting the hadronic energy scale up and down by 5\%. In the second table, the quoted value
225     refers to the amount of additional smearing of the MET, as discussed in the text. In the third table, the normalization of all backgrounds
226     other than $t\bar{t} \to$~dilepton is varied.
227     {\bf \color{ref} Should I remove `observed' and `predicted' and show only the ratio? }}
228    
229     \begin{tabular}{ lcccc }
230     \hline
231     MET scale & Predicted & Observed & Obs/pred \\
232     \hline
233     nominal & 0.92 $ \pm $ 0.11 & 1.29 $ \pm $ 0.11 & 1.40 $ \pm $ 0.20 \\
234     up & 0.92 $ \pm $ 0.11 & 1.53 $ \pm $ 0.12 & 1.66 $ \pm $ 0.23 \\
235     down & 0.81 $ \pm $ 0.07 & 1.08 $ \pm $ 0.11 & 1.32 $ \pm $ 0.17 \\
236     \hline
237    
238     \hline
239     MET smearing & Predicted & Observed & Obs/pred \\
240     \hline
241     nominal & 0.92 $ \pm $ 0.11 & 1.29 $ \pm $ 0.11 & 1.40 $ \pm $ 0.20 \\
242     10\% & 0.90 $ \pm $ 0.11 & 1.30 $ \pm $ 0.11 & 1.44 $ \pm $ 0.21 \\
243     20\% & 0.84 $ \pm $ 0.07 & 1.36 $ \pm $ 0.11 & 1.61 $ \pm $ 0.19 \\
244     30\% & 1.05 $ \pm $ 0.18 & 1.32 $ \pm $ 0.11 & 1.27 $ \pm $ 0.24 \\
245     40\% & 0.85 $ \pm $ 0.07 & 1.37 $ \pm $ 0.11 & 1.61 $ \pm $ 0.19 \\
246     50\% & 1.08 $ \pm $ 0.18 & 1.36 $ \pm $ 0.11 & 1.26 $ \pm $ 0.24 \\
247     \hline
248    
249     \hline
250     non-$t\bar{t} \to$~dilepton scale factor & Predicted & Observed & Obs/pred \\
251     \hline
252     ttdil only & 0.77 $ \pm $ 0.07 & 1.05 $ \pm $ 0.06 & 1.36 $ \pm $ 0.14 \\
253     nominal & 0.92 $ \pm $ 0.11 & 1.29 $ \pm $ 0.11 & 1.40 $ \pm $ 0.20 \\
254     double non-ttdil yield & 1.06 $ \pm $ 0.18 & 1.52 $ \pm $ 0.20 & 1.43 $ \pm $ 0.30 \\
255     \hline
256     \end{tabular}
257     \end{center}
258     \end{table}
259    
260    
261    
262 claudioc 1.2 The largest discrepancy between prediction and observation occurs on the first
263     line of Table~\ref{tab:victorybad}, {\em i.e.}, at the generator level with no
264     cuts. We have verified that this effect is due to the polarization of
265     the $W$ (we remove the polarization by reweighting the events and we get
266     good agreement between prediction and observation). The kinematical
267 claudioc 1.6 requirements (lines 2,3,4) compensate somewhat for the effect of W polarization.
268     Going from GEN to RECOSIM, the change in observed/predicted is small.
269     % We have tracked this down to the fact that tcMET underestimates the true \met
270     % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
271     %for each 1.5\% change in \met response.}.
272     Finally, contamination from non $t\bar{t}$
273 benhoob 1.16 events can have a significant impact on the BG prediction.
274     %The changes between
275     %lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
276     %Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
277     %is statistically not well quantified).
278 claudioc 1.2
279     An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
280     not include effects of spin correlations between the two top quarks.
281     We have studied this effect at the generator level using Alpgen. We find
282 claudioc 1.7 that the bias is at the few percent level.
283 claudioc 1.2
284     Based on the results of Table~\ref{tab:victorybad}, we conclude that the
285 benhoob 1.28 naive data-driven background estimate based on $P_T{(\ell\ell)}$ needs to
286     be corrected by a factor of $ K_C = 1.4 \pm 0.2(stat)$.
287 claudioc 1.2
288 benhoob 1.28 The 2 dominant sources of systematic uncertainty in $K_C$ are due to non-$t\bar{t} \to$~dilepton backgrounds,
289     and the MET scale and resolution uncertainties. The impact of non-$t\bar{t}$-dilepton background is assessed
290     by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton, as shown in Table~\ref{table_kc}.
291     The systematic is assessed as the larger of the differences between the nominal $K_C$ value and the values
292     obtained using only $t\bar{t} \to$~dilepton MC and obtained by doubling the non $t\bar{t} \to$~dilepton component,
293     giving an uncertainty of $0.04$.
294    
295     The uncertainty in $K_C$ due to the MET scale uncertainty is assessed by varying the hadronic energy scale using
296     the same method as in~\ref{} and checking how much $K_C$ changes, as summarized in Table~\ref{tab:victorysyst}.
297     This gives an uncertainty of 0.3. We also assess the impact of the MET resolution uncertainty on $K_C$ by applying
298     a random smearing to the MET. For each event, we determine the expected MET resolution based on the sumJetPt, and
299     smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%. The results show that
300     $K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty.
301 claudioc 1.2
302 benhoob 1.28 Incorporating all the statistical and systematic uncertainties we find $K_C = 1.4 \pm 0.4$.
303 claudioc 1.6
304 claudioc 1.2 \subsection{Signal Contamination}
305     \label{sec:sigcont}
306    
307 claudioc 1.6 All data-driven methods are in principle subject to signal contaminations
308 claudioc 1.2 in the control regions, and the methods described in
309     Sections~\ref{sec:abcd} and~\ref{sec:victory} are not exceptions.
310     Signal contamination tends to dilute the significance of a signal
311     present in the data by inflating the background prediction.
312    
313     It is hard to quantify how important these effects are because we
314     do not know what signal may be hiding in the data. Having two
315     independent methods (in addition to Monte Carlo ``dead-reckoning'')
316     adds redundancy because signal contamination can have different effects
317     in the different control regions for the two methods.
318     For example, in the extreme case of a
319     new physics signal
320 claudioc 1.6 with $P_T(\ell \ell) = \met$, an excess of events would be seen
321 claudioc 1.2 in the ABCD method but not in the $P_T(\ell \ell)$ method.
322    
323 claudioc 1.4
324 claudioc 1.2 The LM points are benchmarks for SUSY analyses at CMS. The effects
325     of signal contaminations for a couple such points are summarized
326 benhoob 1.14 in Table~\ref{tab:sigcont}. Signal contamination is definitely an important
327 claudioc 1.2 effect for these two LM points, but it does not totally hide the
328     presence of the signal.
329 claudioc 1.1
330    
331 claudioc 1.2 \begin{table}[htb]
332     \begin{center}
333 benhoob 1.14 \caption{\label{tab:sigcont} Effects of signal contamination
334     for the two data-driven background estimates. The three columns give
335     the expected yield in the signal region and the background estimates
336 benhoob 1.20 using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.}
337 benhoob 1.14 \begin{tabular}{lccc}
338 claudioc 1.2 \hline
339 benhoob 1.14 & Yield & ABCD & $P_T(\ell \ell)$ \\
340     \hline
341 benhoob 1.27 SM only & 1.29 & 1.25 & 0.92 \\
342     SM + LM0 & 7.57 & 4.44 & 1.96 \\
343     SM + LM1 & 3.85 & 1.60 & 1.43 \\
344 claudioc 1.2 \hline
345     \end{tabular}
346     \end{center}
347     \end{table}
348