ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
Revision: 1.33
Committed: Fri Dec 3 14:15:04 2010 UTC (14 years, 5 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
Changes since 1.32: +12 -11 lines
Log Message:
Comments on ABCD syst

File Contents

# User Rev Content
1 claudioc 1.1 \section{Data Driven Background Estimation Methods}
2     \label{sec:datadriven}
3     We have developed two data-driven methods to
4     estimate the background in the signal region.
5 benhoob 1.10 The first one exploits the fact that
6 benhoob 1.22 SumJetPt and \met$/\sqrt{\rm SumJetPt}$ are nearly
7 claudioc 1.1 uncorrelated for the $t\bar{t}$ background
8     (Section~\ref{sec:abcd}); the second one
9     is based on the fact that in $t\bar{t}$ the
10     $P_T$ of the dilepton pair is on average
11     nearly the same as the $P_T$ of the pair of neutrinos
12     from $W$-decays, which is reconstructed as \met in the
13     detector.
14    
15 benhoob 1.15
16 claudioc 1.6 %{\color{red} I took these
17     %numbers from the twiki, rescaling from 11.06 to 30/pb.
18     %They seem too large...are they really right?}
19 claudioc 1.1
20    
21     \subsection{ABCD method}
22     \label{sec:abcd}
23    
24 benhoob 1.22 We find that in $t\bar{t}$ events SumJetPt and
25 benhoob 1.16 \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 benhoob 1.31 as demonstrated in Fig.~\ref{fig:uncor}.
27 claudioc 1.1 Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28     sumJetPt plane to estimate the background in a data driven way.
29    
30 benhoob 1.24 %\begin{figure}[bht]
31     %\begin{center}
32     %\includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
33     %\caption{\label{fig:uncor}\protect Distributions of SumJetPt
34     %in MC $t\bar{t}$ events for different intervals of
35     %MET$/\sqrt{\rm SumJetPt}$.}
36     %\end{center}
37     %\end{figure}
38    
39 claudioc 1.21 \begin{figure}[bht]
40 claudioc 1.1 \begin{center}
41 benhoob 1.24 \includegraphics[width=0.75\linewidth]{uncor.png}
42 claudioc 1.1 \caption{\label{fig:uncor}\protect Distributions of SumJetPt
43     in MC $t\bar{t}$ events for different intervals of
44 benhoob 1.24 MET$/\sqrt{\rm SumJetPt}$. h1, h2, and h3 refer to the MET$/\sqrt{\rm SumJetPt}$
45     intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively.}
46 claudioc 1.1 \end{center}
47     \end{figure}
48    
49 claudioc 1.21 \begin{figure}[tb]
50 claudioc 1.1 \begin{center}
51 benhoob 1.31 \includegraphics[width=0.75\linewidth]{ttdil_uncor_38X.png}
52 benhoob 1.22 \caption{\label{fig:abcdMC}\protect Distributions of MET$/\sqrt{\rm SumJetPt}$ vs.
53 benhoob 1.31 SumJetPt for SM Monte Carlo. Here we also show our choice of ABCD regions. The correlation coefficient
54     ${\rm corr_{XY}}$ is computed for events falling in the ABCD regions.}
55 claudioc 1.1 \end{center}
56     \end{figure}
57    
58    
59     Our choice of ABCD regions is shown in Figure~\ref{fig:abcdMC}.
60     The signal region is region D. The expected number of events
61 benhoob 1.29 in the four regions for the SM Monte Carlo, as well as the background
62     prediction A $\times$ C / B are given in Table~\ref{tab:abcdMC} for an integrated
63 benhoob 1.33 luminosity of 35 pb$^{-1}$. In Table~\ref{tab:abcdsyst}, we test the stability of
64     observed/predicted with respect to variations in the ABCD boundaries.
65     Based on the results in Tables~\ref{tab:abcdMC} and~\ref{tab:abcdsyst}, we assess
66     a systematic uncertainty of 20\% on the prediction of the ABCD method.
67 benhoob 1.29
68     %As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties
69     %by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty,
70     %which we take as $\pm$5\% for SumJetPt and $\pm$2.5\% for MET/$\sqrt{\rm SumJetPt}$, since the
71     %uncertainty on this quantity partially cancels due to the fact that it is a ratio of correlated
72     %quantities. Based on these studies we assess a correction factor $k_{ABCD} = 1.2 \pm 0.2$ to the
73     %predicted yield using the ABCD method.
74 benhoob 1.24
75    
76 claudioc 1.9 %{\color{red} Avi wants some statement about stability
77     %wrt changes in regions. I am not sure that we have done it and
78     %I am not sure it is necessary (Claudio).}
79 claudioc 1.1
80 claudioc 1.21 \begin{table}[ht]
81 claudioc 1.1 \begin{center}
82     \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
83 benhoob 1.13 35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
84 benhoob 1.16 the signal region given by A $\times$ C / B. Here `SM other' is the sum
85 benhoob 1.13 of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
86     $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
87 benhoob 1.16 \begin{tabular}{lccccc}
88 benhoob 1.13 \hline
89 benhoob 1.27 sample & A & B & C & D & A $\times$ C / B \\
90 benhoob 1.13 \hline
91 benhoob 1.27 $t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 8.27 $\pm$ 0.18 & 32.16 $\pm$ 0.35 & 4.69 $\pm$ 0.13 & 1.05 $\pm$ 0.06 & 1.21 $\pm$ 0.04 \\
92     $Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.22 $\pm$ 0.11 & 1.54 $\pm$ 0.29 & 0.05 $\pm$ 0.05 & 0.16 $\pm$ 0.09 & 0.01 $\pm$ 0.01 \\
93     SM other & 0.54 $\pm$ 0.03 & 2.28 $\pm$ 0.12 & 0.23 $\pm$ 0.03 & 0.07 $\pm$ 0.01 & 0.05 $\pm$ 0.01 \\
94 benhoob 1.25 \hline
95 benhoob 1.27 total SM MC & 9.03 $\pm$ 0.21 & 35.97 $\pm$ 0.46 & 4.97 $\pm$ 0.15 & 1.29 $\pm$ 0.11 & 1.25 $\pm$ 0.05 \\
96 claudioc 1.1 \hline
97     \end{tabular}
98     \end{center}
99     \end{table}
100    
101 benhoob 1.24
102    
103     \begin{table}[ht]
104     \begin{center}
105 benhoob 1.27 \caption{\label{tab:abcdsyst}
106     {\bf \color{red} Do we need this study at all? Observed/predicted is consistent within stat uncertainties as the boundaries are varied- is it enough to simply state this fact in the text??? }
107     Results of the systematic study of the ABCD method by varying the boundaries
108 benhoob 1.24 between the ABCD regions shown in Fig.~\ref{fig:abcdMC}. Here $x_1$ is the lower SumJetPt boundary and
109     $x_2$ is the boundary separating regions A and B from C and D, their nominal values are 125 and 300~GeV,
110     respectively. $y_1$ is the lower MET/$\sqrt{\rm SumJetPt}$ boundary and
111     $y_2$ is the boundary separating regions B and C from A and D, their nominal values are 4.5 and 8.5~GeV$^{1/2}$,
112     respectively.}
113     \begin{tabular}{cccc|c}
114     \hline
115     $x_1$ & $x_2$ & $y_1$ & $y_2$ & Observed/Predicted \\
116     \hline
117 benhoob 1.33 nominal & nominal & nominal & nominal & $1.03 \pm 0.10$ \\
118     +5\% & +5\% & +2.5\% & +2.5\% & $1.13 \pm 0.13$ \\
119     +5\% & +5\% & nominal & nominal & $1.08 \pm 0.12$ \\
120     nominal & nominal & +2.5\% & +2.5\% & $1.07 \pm 0.11$ \\
121     nominal & +5\% & nominal & +2.5\% & $1.09 \pm 0.12$ \\
122     nominal & -5\% & nominal & -2.5\% & $0.98 \pm 0.08$ \\
123     -5\% & -5\% & +2.5\% & +2.5\% & $1.03 \pm 0.09$ \\
124     +5\% & +5\% & -2.5\% & -2.5\% & $1.03 \pm 0.11$ \\
125 benhoob 1.24 \hline
126     \end{tabular}
127     \end{center}
128     \end{table}
129    
130 claudioc 1.2 \subsection{Dilepton $P_T$ method}
131     \label{sec:victory}
132     This method is based on a suggestion by V. Pavlunin\cite{ref:victory},
133     and was investigated by our group in 2009\cite{ref:ourvictory}.
134     The idea is that in dilepton $t\bar{t}$ events the lepton and neutrinos
135     from $W$ decays have the same $P_T$ spectrum (modulo $W$ polarization
136     effects). One can then use the observed
137     $P_T(\ell\ell)$ distribution to model the sum of neutrino $P_T$'s which
138     is identified with the \met.
139    
140     Then, in order to predict the $t\bar{t} \to$ dilepton contribution to a
141     selection with \met$+$X, one applies a cut on $P_T(\ell\ell)+$X instead.
142     In practice one has to rescale the result of the $P_T(\ell\ell)+$X selection
143     to account for the fact that any dilepton selection must include a
144     moderate \met cut in order to reduce Drell Yan backgrounds. This
145     is discussed in Section 5.3 of Reference~\cite{ref:ourvictory}; for a \met
146 benhoob 1.16 cut of 50 GeV, the rescaling factor is obtained from the MC as
147 claudioc 1.2
148     \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
149     \begin{center}
150 benhoob 1.31 $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~} = 1.52$
151 claudioc 1.2 \end{center}
152    
153    
154 benhoob 1.10 %%%TO BE REPLACED
155     %Given the integrated luminosity of the
156     %present dataset, the determination of $K$ in data is severely statistics
157     %limited. Thus, we take $K$ from $t\bar{t}$ Monte Carlo as
158    
159     %\begin{center}
160     %$ K_{MC} = \frac{\int_0^{\infty} {\cal N}(\met)~~d\met~}{\int_{50}^{\infty} {\cal N}(\met)~~d\met~}$
161     %\end{center}
162 claudioc 1.9
163 benhoob 1.10 %\noindent {\color{red} For the 11 pb result we have used $K$ from data.}
164 claudioc 1.2
165     There are several effects that spoil the correspondance between \met and
166     $P_T(\ell\ell)$:
167     \begin{itemize}
168     \item $Ws$ in top events are polarized. Neutrinos are emitted preferentially
169 benhoob 1.22 parallel to the $W$ velocity while charged leptons are emitted prefertially
170     anti-parallel. Thus the $P_T(\nu\nu)$ distribution is harder
171 claudioc 1.2 than the $P_T(\ell\ell)$ distribution for top dilepton events.
172     \item The lepton selections results in $P_T$ and $\eta$ cuts on the individual
173     leptons that have no simple correspondance to the neutrino requirements.
174     \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
175     neutrinos which is only partially compensated by the $K$ factor above.
176     \item The \met resolution is much worse than the dilepton $P_T$ resolution.
177 benhoob 1.16 When convoluted with a falling spectrum in the tails of \met, this results
178 claudioc 1.2 in a harder spectrum for \met than the original $P_T(\nu\nu)$.
179     \item The \met response in CMS is not exactly 1. This causes a distortion
180     in the \met distribution that is not present in the $P_T(\ell\ell)$ distribution.
181     \item The $t\bar{t} \to$ dilepton signal includes contributions from
182     $W \to \tau \to \ell$. For these events the arguments about the equivalence
183     of $P_T(\ell\ell)$ and $P_T(\nu\nu)$ do not apply.
184     \item A dilepton selection will include SM events from non $t\bar{t}$
185     sources. These events can affect the background prediction. Particularly
186     dangerous are high $P_T$ Drell Yan events that barely pass the \met$>$ 50
187     GeV selection. They will tend to push the data-driven background prediction up.
188 benhoob 1.16 Therefore we estimate the number of DY events entering the background prediction
189     using the $R_{out/in}$ method as described in Sec.~\ref{sec:othBG}.
190 claudioc 1.2 \end{itemize}
191    
192     We have studied these effects in SM Monte Carlo, using a mixture of generator and
193     reconstruction level studies, putting the various effects in one at a time.
194     For each configuration, we apply the data-driven method and report as figure
195     of merit the ratio of observed and predicted events in the signal region.
196     The results are summarized in Table~\ref{tab:victorybad}.
197    
198     \begin{table}[htb]
199     \begin{center}
200 benhoob 1.27 \caption{\label{tab:victorybad}
201 benhoob 1.32 {\bf \color{red} Should we either update this with 38X MC or remove it?? }
202 benhoob 1.27 Test of the data driven method in Monte Carlo
203 claudioc 1.2 under different assumptions. See text for details.}
204 claudioc 1.6 \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
205 claudioc 1.2 \hline
206 claudioc 1.6 & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or & Lepton $P_T$ & Z veto & \met $>$ 50& obs/pred \\
207 benhoob 1.28 & included & included & included & RECOSIM & and $\eta$ cuts & & & \\ \hline
208 claudioc 1.6 1&Y & N & N & GEN & N & N & N & 1.90 \\
209     2&Y & N & N & GEN & Y & N & N & 1.64 \\
210     3&Y & N & N & GEN & Y & Y & N & 1.59 \\
211     4&Y & N & N & GEN & Y & Y & Y & 1.55 \\
212     5&Y & N & N & RECOSIM & Y & Y & Y & 1.51 \\
213     6&Y & Y & N & RECOSIM & Y & Y & Y & 1.58 \\
214 benhoob 1.17 7&Y & Y & Y & RECOSIM & Y & Y & Y & 1.38 \\
215 claudioc 1.2 \hline
216     \end{tabular}
217     \end{center}
218     \end{table}
219    
220    
221 benhoob 1.28 \begin{table}[htb]
222     \begin{center}
223     \caption{\label{tab:victorysyst}
224 benhoob 1.30 Summary of uncertainties in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton.
225 benhoob 1.28 In the first table, `up' and `down' refer to shifting the hadronic energy scale up and down by 5\%. In the second table, the quoted value
226     refers to the amount of additional smearing of the MET, as discussed in the text. In the third table, the normalization of all backgrounds
227     other than $t\bar{t} \to$~dilepton is varied.
228 benhoob 1.30 {\bf \color{red} Should I remove `observed' and `predicted' and show only the ratio? }}
229 benhoob 1.28
230     \begin{tabular}{ lcccc }
231     \hline
232     MET scale & Predicted & Observed & Obs/pred \\
233     \hline
234     nominal & 0.92 $ \pm $ 0.11 & 1.29 $ \pm $ 0.11 & 1.40 $ \pm $ 0.20 \\
235     up & 0.92 $ \pm $ 0.11 & 1.53 $ \pm $ 0.12 & 1.66 $ \pm $ 0.23 \\
236     down & 0.81 $ \pm $ 0.07 & 1.08 $ \pm $ 0.11 & 1.32 $ \pm $ 0.17 \\
237     \hline
238     MET smearing & Predicted & Observed & Obs/pred \\
239     \hline
240     nominal & 0.92 $ \pm $ 0.11 & 1.29 $ \pm $ 0.11 & 1.40 $ \pm $ 0.20 \\
241     10\% & 0.90 $ \pm $ 0.11 & 1.30 $ \pm $ 0.11 & 1.44 $ \pm $ 0.21 \\
242     20\% & 0.84 $ \pm $ 0.07 & 1.36 $ \pm $ 0.11 & 1.61 $ \pm $ 0.19 \\
243     30\% & 1.05 $ \pm $ 0.18 & 1.32 $ \pm $ 0.11 & 1.27 $ \pm $ 0.24 \\
244     40\% & 0.85 $ \pm $ 0.07 & 1.37 $ \pm $ 0.11 & 1.61 $ \pm $ 0.19 \\
245     50\% & 1.08 $ \pm $ 0.18 & 1.36 $ \pm $ 0.11 & 1.26 $ \pm $ 0.24 \\
246     \hline
247     non-$t\bar{t} \to$~dilepton scale factor & Predicted & Observed & Obs/pred \\
248     \hline
249     ttdil only & 0.77 $ \pm $ 0.07 & 1.05 $ \pm $ 0.06 & 1.36 $ \pm $ 0.14 \\
250     nominal & 0.92 $ \pm $ 0.11 & 1.29 $ \pm $ 0.11 & 1.40 $ \pm $ 0.20 \\
251     double non-ttdil yield & 1.06 $ \pm $ 0.18 & 1.52 $ \pm $ 0.20 & 1.43 $ \pm $ 0.30 \\
252     \hline
253     \end{tabular}
254     \end{center}
255     \end{table}
256    
257    
258    
259 claudioc 1.2 The largest discrepancy between prediction and observation occurs on the first
260     line of Table~\ref{tab:victorybad}, {\em i.e.}, at the generator level with no
261     cuts. We have verified that this effect is due to the polarization of
262     the $W$ (we remove the polarization by reweighting the events and we get
263     good agreement between prediction and observation). The kinematical
264 claudioc 1.6 requirements (lines 2,3,4) compensate somewhat for the effect of W polarization.
265     Going from GEN to RECOSIM, the change in observed/predicted is small.
266     % We have tracked this down to the fact that tcMET underestimates the true \met
267     % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
268     %for each 1.5\% change in \met response.}.
269     Finally, contamination from non $t\bar{t}$
270 benhoob 1.16 events can have a significant impact on the BG prediction.
271     %The changes between
272     %lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
273     %Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
274     %is statistically not well quantified).
275 claudioc 1.2
276     An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
277     not include effects of spin correlations between the two top quarks.
278     We have studied this effect at the generator level using Alpgen. We find
279 claudioc 1.7 that the bias is at the few percent level.
280 claudioc 1.2
281 benhoob 1.31 Based on the results of Table~\ref{tab:victorysyst}, we conclude that the
282 benhoob 1.28 naive data-driven background estimate based on $P_T{(\ell\ell)}$ needs to
283 benhoob 1.31 be corrected by a factor of $ K_C = 1.4 \pm 0.2({\rm stat})$.
284 claudioc 1.2
285 benhoob 1.31 The dominant sources of systematic uncertainty in $K_C$ are due to non-$t\bar{t} \to$~dilepton backgrounds,
286     and the MET scale and resolution uncertainties, as summarized in Table~\ref{tab:victorysyst}.
287     The impact of non-$t\bar{t}$-dilepton background is assessed
288     by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton.
289     The uncertainty is assessed as the larger of the differences between the nominal $K_C$ value and the values
290 benhoob 1.28 obtained using only $t\bar{t} \to$~dilepton MC and obtained by doubling the non $t\bar{t} \to$~dilepton component,
291     giving an uncertainty of $0.04$.
292    
293     The uncertainty in $K_C$ due to the MET scale uncertainty is assessed by varying the hadronic energy scale using
294 benhoob 1.32 the same method as in~\cite{ref:top}, giving an uncertainty of 0.3. We also assess the impact of the MET resolution
295 benhoob 1.31 uncertainty on $K_C$ by applying a random smearing to the MET. For each event, we determine the expected MET resolution
296     based on the sumJetPt, and smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%.
297     The results show that $K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty.
298 claudioc 1.2
299 benhoob 1.28 Incorporating all the statistical and systematic uncertainties we find $K_C = 1.4 \pm 0.4$.
300 claudioc 1.6
301 claudioc 1.2 \subsection{Signal Contamination}
302     \label{sec:sigcont}
303    
304 claudioc 1.6 All data-driven methods are in principle subject to signal contaminations
305 claudioc 1.2 in the control regions, and the methods described in
306     Sections~\ref{sec:abcd} and~\ref{sec:victory} are not exceptions.
307     Signal contamination tends to dilute the significance of a signal
308     present in the data by inflating the background prediction.
309    
310     It is hard to quantify how important these effects are because we
311     do not know what signal may be hiding in the data. Having two
312     independent methods (in addition to Monte Carlo ``dead-reckoning'')
313     adds redundancy because signal contamination can have different effects
314     in the different control regions for the two methods.
315     For example, in the extreme case of a
316     new physics signal
317 claudioc 1.6 with $P_T(\ell \ell) = \met$, an excess of events would be seen
318 claudioc 1.2 in the ABCD method but not in the $P_T(\ell \ell)$ method.
319    
320 claudioc 1.4
321 claudioc 1.2 The LM points are benchmarks for SUSY analyses at CMS. The effects
322     of signal contaminations for a couple such points are summarized
323 benhoob 1.14 in Table~\ref{tab:sigcont}. Signal contamination is definitely an important
324 claudioc 1.2 effect for these two LM points, but it does not totally hide the
325     presence of the signal.
326 claudioc 1.1
327    
328 claudioc 1.2 \begin{table}[htb]
329     \begin{center}
330 benhoob 1.14 \caption{\label{tab:sigcont} Effects of signal contamination
331     for the two data-driven background estimates. The three columns give
332     the expected yield in the signal region and the background estimates
333 benhoob 1.20 using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.}
334 benhoob 1.14 \begin{tabular}{lccc}
335 claudioc 1.2 \hline
336 benhoob 1.14 & Yield & ABCD & $P_T(\ell \ell)$ \\
337     \hline
338 benhoob 1.27 SM only & 1.29 & 1.25 & 0.92 \\
339     SM + LM0 & 7.57 & 4.44 & 1.96 \\
340     SM + LM1 & 3.85 & 1.60 & 1.43 \\
341 claudioc 1.2 \hline
342     \end{tabular}
343     \end{center}
344     \end{table}
345