ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.1 by claudioc, Thu Oct 28 05:28:08 2010 UTC vs.
Revision 1.15 by benhoob, Thu Nov 11 16:36:56 2010 UTC

# Line 2 | Line 2
2   \label{sec:datadriven}
3   We have developed two data-driven methods to
4   estimate the background in the signal region.
5 < The first one explouts the fact that
5 > The first one exploits the fact that
6   \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
7   uncorrelated for the $t\bar{t}$ background
8   (Section~\ref{sec:abcd});  the second one
# Line 12 | Line 12 | nearly the same as the $P_T$ of the pair
12   from $W$-decays, which is reconstructed as \met in the
13   detector.
14  
15 < in 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
16 < the signal region.  The expectations from the LMO
17 < and LM1 SUSY benchmark points are {\color{red} XX} and
18 < {\color{red} XX} events respectively.
15 >
16 > %{\color{red} I took these
17 > %numbers from the twiki, rescaling from 11.06 to 30/pb.
18 > %They seem too large...are they really right?}
19  
20  
21   \subsection{ABCD method}
# Line 27 | Line 27 | This is demonstrated in Figure~\ref{fig:
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
30 < \begin{figure}[htb]
30 > \begin{figure}[tb]
31   \begin{center}
32   \includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
33   \caption{\label{fig:uncor}\protect Distributions of SumJetPt
# Line 36 | Line 36 | MET$/\sqrt{\rm SumJetPt}$.}
36   \end{center}
37   \end{figure}
38  
39 < \begin{figure}[htb]
39 > \begin{figure}[bt]
40   \begin{center}
41 < \includegraphics[width=0.75\linewidth]{abcdMC.jpg}
41 > \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
42   \caption{\label{fig:abcdMC}\protect Distributions of SumJetPt
43   vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo.  Here we also
44 < show our choice of ABCD regions. {\color{red} We need a better
45 < picture with the letters A-B-C-D and with the numerical values
46 < of the boundaries clearly indicated.}}
44 > show our choice of ABCD regions.}
45   \end{center}
46   \end{figure}
47  
# Line 51 | Line 49 | of the boundaries clearly indicated.}}
49   Our choice of ABCD regions is shown in Figure~\ref{fig:abcdMC}.
50   The signal region is region D.  The expected number of events
51   in the four regions for the SM Monte Carlo, as well as the BG
52 < prediction AC/B is given in Table~\ref{tab:abcdMC} for an integrated
53 < luminosity of 30 pb$^{-1}$.  The ABCD method is accurate
54 < to about 10\%.
52 > prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
53 > luminosity of 35 pb$^{-1}$.  The ABCD method is accurate
54 > to about 20\%.
55 > %{\color{red} Avi wants some statement about stability
56 > %wrt changes in regions.  I am not sure that we have done it and
57 > %I am not sure it is necessary (Claudio).}
58  
59   \begin{table}[htb]
60   \begin{center}
61   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
62 < 30 pb$^{-1}$ in the ABCD regions.}
63 < \begin{tabular}{|l|c|c|c|c||c|}
62 > 35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
63 > the signal region given by A$\times$C/B. Here 'SM other' is the sum
64 > of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
65 > $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
66 > \begin{tabular}{l||c|c|c|c||c}
67 > \hline
68 >         sample                          &              A   &              B   &              C   &              D   &    A$\times$C/B \\
69 > \hline
70 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
71 >   $Z^0$ + jets                          &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
72 >       SM other                          &           0.65   &           2.31   &           0.17   &           0.14   &           0.05  \\
73 > \hline
74 >    total SM MC                          &           8.61   &          36.54   &           5.05   &           1.41   &           1.19  \\
75 > \hline
76 > \end{tabular}
77 > \end{center}
78 > \end{table}
79 >
80 > \subsection{Dilepton $P_T$ method}
81 > \label{sec:victory}
82 > This method is based on a suggestion by V. Pavlunin\cite{ref:victory},
83 > and was investigated by our group in 2009\cite{ref:ourvictory}.
84 > The idea is that in dilepton $t\bar{t}$ events the lepton and neutrinos
85 > from $W$ decays have the same $P_T$ spectrum (modulo $W$ polarization
86 > effects).  One can then use the observed
87 > $P_T(\ell\ell)$ distribution to model the sum of neutrino $P_T$'s which
88 > is identified with the \met.
89 >
90 > Then, in order to predict the $t\bar{t} \to$ dilepton contribution to a
91 > selection with \met$+$X, one applies a cut on $P_T(\ell\ell)+$X instead.
92 > In practice one has to rescale the result of the $P_T(\ell\ell)+$X selection
93 > to account for the fact that any dilepton selection must include a
94 > moderate \met cut in order to reduce Drell Yan backgrounds.  This
95 > is discussed in Section 5.3 of Reference~\cite{ref:ourvictory}; for a \met
96 > cut of 50 GeV, the rescaling factor is obtained from the data as
97 >
98 > \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
99 > \begin{center}
100 > $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~}$
101 > \end{center}
102 >
103 >
104 > Monte Carlo studies give values of $K$ that are typically between 1.5 and 1.6,
105 > depending on selection details.  
106 > %%%TO BE REPLACED
107 > %Given the integrated luminosity of the
108 > %present dataset, the determination of $K$ in data is severely statistics
109 > %limited.  Thus, we take $K$ from $t\bar{t}$ Monte Carlo as
110 >
111 > %\begin{center}
112 > %$ K_{MC} = \frac{\int_0^{\infty} {\cal N}(\met)~~d\met~}{\int_{50}^{\infty} {\cal N}(\met)~~d\met~}$
113 > %\end{center}
114 >
115 > %\noindent {\color{red} For the 11 pb result we have used $K$ from data.}
116 >
117 > There are several effects that spoil the correspondance between \met and
118 > $P_T(\ell\ell)$:
119 > \begin{itemize}
120 > \item $Ws$ in top events are polarized.  Neutrinos are emitted preferentially
121 > forward in the $W$ rest frame, thus the $P_T(\nu\nu)$ distribution is harder
122 > than the $P_T(\ell\ell)$ distribution for top dilepton events.
123 > \item The lepton selections results in $P_T$ and $\eta$ cuts on the individual
124 > leptons that have no simple correspondance to the neutrino requirements.
125 > \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
126 > neutrinos which is only partially compensated by the $K$ factor above.
127 > \item The \met resolution is much worse than the dilepton $P_T$ resolution.
128 > When convoluted with a falling spectrum in the tails of \met, this result
129 > in a harder spectrum for \met than the original $P_T(\nu\nu)$.
130 > \item The \met response in CMS is not exactly 1.  This causes a distortion
131 > in the \met distribution that is not present in the $P_T(\ell\ell)$ distribution.
132 > \item The $t\bar{t} \to$ dilepton signal includes contributions from
133 > $W \to \tau \to \ell$.  For these events the arguments about the equivalence
134 > of $P_T(\ell\ell)$ and $P_T(\nu\nu)$ do not apply.
135 > \item A dilepton selection will include SM events from non $t\bar{t}$
136 > sources.  These events can affect the background prediction.  Particularly
137 > dangerous are high $P_T$ Drell Yan events that barely pass the \met$>$ 50
138 > GeV selection.  They will tend to push the data-driven background prediction up.
139 > \end{itemize}
140 >
141 > We have studied these effects in SM Monte Carlo, using a mixture of generator and
142 > reconstruction level studies, putting the various effects in one at a time.
143 > For each configuration, we apply the data-driven method and report as figure
144 > of merit the ratio of observed and predicted events in the signal region.
145 > The results are summarized in Table~\ref{tab:victorybad}.
146 >
147 > \begin{table}[htb]
148 > \begin{center}
149 > \caption{\label{tab:victorybad} Test of the data driven method in Monte Carlo
150 > under different assumptions.  See text for details.}
151 > \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
152 > \hline
153 > & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & Z veto & \met $>$ 50& obs/pred \\
154 > & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &  \\ \hline
155 > 1&Y                        &     N          &   N      &  GEN    &   N             &   N    & N          & 1.90  \\
156 > 2&Y                        &     N          &   N      &  GEN    &   Y             &   N    & N          & 1.64  \\
157 > 3&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & N          & 1.59  \\
158 > 4&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & Y          & 1.55  \\
159 > 5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
160 > 6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
161 > 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.18  \\
162 > \hline
163 > \end{tabular}
164 > \end{center}
165 > \end{table}
166 >
167 >
168 > The largest discrepancy between prediction and observation occurs on the first
169 > line of Table~\ref{tab:victorybad}, {\em i.e.}, at the generator level with no
170 > cuts.  We have verified that this effect is due to the polarization of
171 > the $W$ (we remove the polarization by reweighting the events and we get
172 > good agreement between prediction and observation).  The kinematical
173 > requirements (lines 2,3,4) compensate somewhat for the effect of W polarization.
174 > Going from GEN to RECOSIM, the change in observed/predicted is small.  
175 > % We have tracked this down to the fact that tcMET underestimates the true \met
176 > % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
177 > %for each 1.5\% change in \met response.}.  
178 > Finally, contamination from non $t\bar{t}$
179 > events can have a significant impact on the BG prediction.  The changes between
180 > lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
181 > Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
182 > is statistically not well quantified).
183 >
184 > An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
185 > not include effects of spin correlations between the two top quarks.  
186 > We have studied this effect at the generator level using Alpgen.  We find
187 > that the bias is at the few percent level.
188 >
189 > %%%TO BE REPLACED
190 > %Based on the results of Table~\ref{tab:victorybad}, we conclude that the
191 > %naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
192 > %be corrected by a factor of {\color{red} $ K_{\rm{fudge}} =1.2 \pm 0.3$
193 > %(We still need to settle on thie exact value of this.
194 > %For the 11 pb analysis it is taken as =1.)} . The quoted
195 > %uncertainty is based on the stability of the Monte Carlo tests under
196 > %variations of event selections, choices of \met algorithm, etc.
197 > %For example, we find that observed/predicted changes by roughly 0.1
198 > %for each 1.5\% change in the average \met response.  
199 >
200 > Based on the results of Table~\ref{tab:victorybad}, we conclude that the
201 > naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
202 > be corrected by a factor of $ K_C = X \pm Y$.
203 > The value of this correction factor as well as the systematic uncertainty
204 > will be assessed using 38X ttbar madgraph MC. In the following we use
205 > $K_C = 1$ for simplicity. Based on previous MC studies we foresee a correction
206 > factor of $K_C \approx 1.2 - 1.5$, and we will assess an uncertainty
207 > based on the stability of the Monte Carlo tests under
208 > variations of event selections, choices of \met algorithm, etc.
209 > For example, we find that observed/predicted changes by roughly 0.1
210 > for each 1.5\% change in the average \met response.
211 >
212 >
213 >
214 > \subsection{Signal Contamination}
215 > \label{sec:sigcont}
216 >
217 > All data-driven methods are in principle subject to signal contaminations
218 > in the control regions, and the methods described in
219 > Sections~\ref{sec:abcd} and~\ref{sec:victory} are not exceptions.
220 > Signal contamination tends to dilute the significance of a signal
221 > present in the data by inflating the background prediction.
222 >
223 > It is hard to quantify how important these effects are because we
224 > do not know what signal may be hiding in the data.  Having two
225 > independent methods (in addition to Monte Carlo ``dead-reckoning'')
226 > adds redundancy because signal contamination can have different effects
227 > in the different control regions for the two methods.
228 > For example, in the extreme case of a
229 > new physics signal
230 > with $P_T(\ell \ell) = \met$, an excess of events would be seen
231 > in the ABCD method but not in the $P_T(\ell \ell)$ method.
232 >
233 >
234 > The LM points are benchmarks for SUSY analyses at CMS.  The effects
235 > of signal contaminations for a couple such points are summarized
236 > in Table~\ref{tab:sigcont}. Signal contamination is definitely an important
237 > effect for these two LM points, but it does not totally hide the
238 > presence of the signal.
239 >
240 >
241 > \begin{table}[htb]
242 > \begin{center}
243 > \caption{\label{tab:sigcont} Effects of signal contamination
244 > for the two data-driven background estimates. The three columns give
245 > the expected yield in the signal region and the background estimates
246 > using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.}
247 > \begin{tabular}{lccc}
248 > \hline
249 >            &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
250 > \hline
251 > SM only     &      1.41       &      1.19    &             0.96  \\
252 > SM + LM0    &      7.88       &      4.24    &             2.28  \\
253 > SM + LM1    &      3.98       &      1.53    &             1.44  \\
254   \hline
64 Sample   & A   & B    & C   & D   & AC/D \\ \hline
65 ttdil    & 6.4 & 28.4 & 4.2 & 1.0 & 0.9  \\
66 Zjets    & 0.0 & 1.3  & 0.2 & 0.0 & 0.0  \\
67 Other SM & 0.6 & 2.1  & 0.2 & 0.1 & 0.0  \\ \hline
68 total MC & 7.0 & 31.8 & 4.5 & 1.1 & 1.0 \\ \hline
255   \end{tabular}
256   \end{center}
257   \end{table}
258  
259  
260  
261 + %\begin{table}[htb]
262 + %\begin{center}
263 + %\caption{\label{tab:sigcontABCD} Effects of signal contamination
264 + %for the background predictions of the ABCD method including LM0 or
265 + %LM1.  Results
266 + %are normalized to 30 pb$^{-1}$.}
267 + %\begin{tabular}{|c|c||c|c||c|c|}
268 + %\hline
269 + %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
270 + %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
271 + %1.2        & 1.0            & 6.8          & 3.7           & 3.4          & 1.3 \\
272 + %\hline
273 + %\end{tabular}
274 + %\end{center}
275 + %\end{table}
276 +
277 + %\begin{table}[htb]
278 + %\begin{center}
279 + %\caption{\label{tab:sigcontPT} Effects of signal contamination
280 + %for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
281 + %LM1.  Results
282 + %are normalized to 30 pb$^{-1}$.}
283 + %\begin{tabular}{|c|c||c|c||c|c|}
284 + %\hline
285 + %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
286 + %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
287 + %1.2        & 1.0            & 6.8          & 2.2           & 3.4          & 1.5 \\
288 + %\hline
289 + %\end{tabular}
290 + %\end{center}
291 + %\end{table}
292  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines