ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.7 by claudioc, Thu Nov 4 04:14:21 2010 UTC vs.
Revision 1.15 by benhoob, Thu Nov 11 16:36:56 2010 UTC

# Line 2 | Line 2
2   \label{sec:datadriven}
3   We have developed two data-driven methods to
4   estimate the background in the signal region.
5 < The first one explouts the fact that
5 > The first one exploits the fact that
6   \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
7   uncorrelated for the $t\bar{t}$ background
8   (Section~\ref{sec:abcd});  the second one
# Line 12 | Line 12 | nearly the same as the $P_T$ of the pair
12   from $W$-decays, which is reconstructed as \met in the
13   detector.
14  
15 < In 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
16 < the signal region.  The expectations from the LMO
17 < and LM1 SUSY benchmark points are 5.6 and
18 < 2.2 events respectively.
15 >
16   %{\color{red} I took these
17   %numbers from the twiki, rescaling from 11.06 to 30/pb.
18   %They seem too large...are they really right?}
# Line 53 | Line 50 | Our choice of ABCD regions is shown in F
50   The signal region is region D.  The expected number of events
51   in the four regions for the SM Monte Carlo, as well as the BG
52   prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
53 < luminosity of 30 pb$^{-1}$.  The ABCD method is accurate
54 < to about 10\%. {\color{red} Avi wants some statement about stability
55 < wrt changes in regions.  I am not sure that we have done it and
56 < I am not sure it is necessary (Claudio).}
53 > luminosity of 35 pb$^{-1}$.  The ABCD method is accurate
54 > to about 20\%.
55 > %{\color{red} Avi wants some statement about stability
56 > %wrt changes in regions.  I am not sure that we have done it and
57 > %I am not sure it is necessary (Claudio).}
58  
59   \begin{table}[htb]
60   \begin{center}
61   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
62 < 30 pb$^{-1}$ in the ABCD regions.}
63 < \begin{tabular}{|l|c|c|c|c||c|}
62 > 35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
63 > the signal region given by A$\times$C/B. Here 'SM other' is the sum
64 > of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
65 > $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
66 > \begin{tabular}{l||c|c|c|c||c}
67 > \hline
68 >         sample                          &              A   &              B   &              C   &              D   &    A$\times$C/B \\
69 > \hline
70 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
71 >   $Z^0$ + jets                          &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
72 >       SM other                          &           0.65   &           2.31   &           0.17   &           0.14   &           0.05  \\
73 > \hline
74 >    total SM MC                          &           8.61   &          36.54   &           5.05   &           1.41   &           1.19  \\
75   \hline
67 Sample   & A   & B    & C   & D   & AC/D \\ \hline
68 ttdil    & 6.9 & 28.6 & 4.2 & 1.0 & 1.0  \\
69 Zjets    & 0.0 & 1.3  & 0.1 & 0.1 & 0.0  \\
70 Other SM & 0.5 & 2.0  & 0.1 & 0.1 & 0.0  \\ \hline
71 total MC & 7.4 & 31.9 & 4.4 & 1.2 & 1.0 \\ \hline
76   \end{tabular}
77   \end{center}
78   \end{table}
# Line 98 | Line 102 | $ K = \frac{\int_0^{\infty} {\cal N}(\pt
102  
103  
104   Monte Carlo studies give values of $K$ that are typically between 1.5 and 1.6,
105 < depending on selection details.
105 > depending on selection details.  
106 > %%%TO BE REPLACED
107 > %Given the integrated luminosity of the
108 > %present dataset, the determination of $K$ in data is severely statistics
109 > %limited.  Thus, we take $K$ from $t\bar{t}$ Monte Carlo as
110 >
111 > %\begin{center}
112 > %$ K_{MC} = \frac{\int_0^{\infty} {\cal N}(\met)~~d\met~}{\int_{50}^{\infty} {\cal N}(\met)~~d\met~}$
113 > %\end{center}
114 >
115 > %\noindent {\color{red} For the 11 pb result we have used $K$ from data.}
116  
117   There are several effects that spoil the correspondance between \met and
118   $P_T(\ell\ell)$:
# Line 172 | Line 186 | not include effects of spin correlations
186   We have studied this effect at the generator level using Alpgen.  We find
187   that the bias is at the few percent level.
188  
189 + %%%TO BE REPLACED
190 + %Based on the results of Table~\ref{tab:victorybad}, we conclude that the
191 + %naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
192 + %be corrected by a factor of {\color{red} $ K_{\rm{fudge}} =1.2 \pm 0.3$
193 + %(We still need to settle on thie exact value of this.
194 + %For the 11 pb analysis it is taken as =1.)} . The quoted
195 + %uncertainty is based on the stability of the Monte Carlo tests under
196 + %variations of event selections, choices of \met algorithm, etc.
197 + %For example, we find that observed/predicted changes by roughly 0.1
198 + %for each 1.5\% change in the average \met response.  
199 +
200   Based on the results of Table~\ref{tab:victorybad}, we conclude that the
201   naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
202 < be corrected by a factor of {\color{red} $1.2 \pm 0.3$ (We need to talk
203 < about this)} . The quoted
204 < uncertainty is based on the stability of the Monte Carlo tests under
202 > be corrected by a factor of $ K_C = X \pm Y$.
203 > The value of this correction factor as well as the systematic uncertainty
204 > will be assessed using 38X ttbar madgraph MC. In the following we use
205 > $K_C = 1$ for simplicity. Based on previous MC studies we foresee a correction
206 > factor of $K_C \approx 1.2 - 1.5$, and we will assess an uncertainty
207 > based on the stability of the Monte Carlo tests under
208   variations of event selections, choices of \met algorithm, etc.
209 < For example, We find that observed/predicted changes by roughly 0.1
210 < for each 1.5\% change in the average \met response.  
209 > For example, we find that observed/predicted changes by roughly 0.1
210 > for each 1.5\% change in the average \met response.
211  
212  
213  
# Line 205 | Line 233 | in the ABCD method but not in the $P_T(\
233  
234   The LM points are benchmarks for SUSY analyses at CMS.  The effects
235   of signal contaminations for a couple such points are summarized
236 < in Table~\ref{tab:sigcontABCD} and~\ref{tab:sigcontPT}.
209 < Signal contamination is definitely an important
236 > in Table~\ref{tab:sigcont}. Signal contamination is definitely an important
237   effect for these two LM points, but it does not totally hide the
238   presence of the signal.
239  
240  
241   \begin{table}[htb]
242   \begin{center}
243 < \caption{\label{tab:sigcontABCD} Effects of signal contamination
244 < for the background predictions of the ABCD method including LM0 or
245 < LM1.  Results
246 < are normalized to 30 pb$^{-1}$.}
247 < \begin{tabular}{|c||c|c||c|c|}
221 < \hline
222 < SM         & SM$+$LM0    & BG Prediction & Sm$+$LM1     & BG Prediction \\
223 < Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
224 < 1.2        & 6.8         & 3.7           & 3.4          & 1.3 \\
243 > \caption{\label{tab:sigcont} Effects of signal contamination
244 > for the two data-driven background estimates. The three columns give
245 > the expected yield in the signal region and the background estimates
246 > using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.}
247 > \begin{tabular}{lccc}
248   \hline
249 < \end{tabular}
250 < \end{center}
251 < \end{table}
252 <
253 < \begin{table}[htb]
231 < \begin{center}
232 < \caption{\label{tab:sigcontPT} Effects of signal contamination
233 < for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
234 < LM1.  Results
235 < are normalized to 30 pb$^{-1}$. {\color{red} Does this BG prediction include
236 < the fudge factor of 1.4 or watever because the method is not perfect.}}
237 < \begin{tabular}{|c||c|c||c|c|}
238 < \hline
239 < SM         & SM$+$LM0    & BG Prediction & Sm$+$LM1     & BG Prediction \\
240 < Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
241 < 1.2        & 6.8         & 2.2           & 3.4          & 1.5 \\
249 >            &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
250 > \hline
251 > SM only     &      1.41       &      1.19    &             0.96  \\
252 > SM + LM0    &      7.88       &      4.24    &             2.28  \\
253 > SM + LM1    &      3.98       &      1.53    &             1.44  \\
254   \hline
255   \end{tabular}
256   \end{center}
257   \end{table}
258  
259 +
260 +
261 + %\begin{table}[htb]
262 + %\begin{center}
263 + %\caption{\label{tab:sigcontABCD} Effects of signal contamination
264 + %for the background predictions of the ABCD method including LM0 or
265 + %LM1.  Results
266 + %are normalized to 30 pb$^{-1}$.}
267 + %\begin{tabular}{|c|c||c|c||c|c|}
268 + %\hline
269 + %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
270 + %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
271 + %1.2        & 1.0            & 6.8          & 3.7           & 3.4          & 1.3 \\
272 + %\hline
273 + %\end{tabular}
274 + %\end{center}
275 + %\end{table}
276 +
277 + %\begin{table}[htb]
278 + %\begin{center}
279 + %\caption{\label{tab:sigcontPT} Effects of signal contamination
280 + %for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
281 + %LM1.  Results
282 + %are normalized to 30 pb$^{-1}$.}
283 + %\begin{tabular}{|c|c||c|c||c|c|}
284 + %\hline
285 + %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
286 + %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
287 + %1.2        & 1.0            & 6.8          & 2.2           & 3.4          & 1.5 \\
288 + %\hline
289 + %\end{tabular}
290 + %\end{center}
291 + %\end{table}
292 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines