ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.15 by benhoob, Thu Nov 11 16:36:56 2010 UTC vs.
Revision 1.16 by benhoob, Thu Nov 11 16:43:32 2010 UTC

# Line 22 | Line 22 | detector.
22   \label{sec:abcd}
23  
24   We find that in $t\bar{t}$ events \met and
25 < \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated.
26 < This is demonstrated in Figure~\ref{fig:uncor}.
25 > \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 > as demonstrated in Figure~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
# Line 60 | Line 60 | to about 20\%.
60   \begin{center}
61   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
62   35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
63 < the signal region given by A$\times$C/B. Here 'SM other' is the sum
63 > the signal region given by A $\times$ C / B. Here `SM other' is the sum
64   of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
65   $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
66 < \begin{tabular}{l||c|c|c|c||c}
66 > \begin{tabular}{lccccc}
67   \hline
68 <         sample                          &              A   &              B   &              C   &              D   &    A$\times$C/B \\
68 >         sample                          &              A   &              B   &              C   &              D   &    A $\times$ C / B \\
69   \hline
70   $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
71     $Z^0$ + jets                          &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
# Line 93 | Line 93 | In practice one has to rescale the resul
93   to account for the fact that any dilepton selection must include a
94   moderate \met cut in order to reduce Drell Yan backgrounds.  This
95   is discussed in Section 5.3 of Reference~\cite{ref:ourvictory}; for a \met
96 < cut of 50 GeV, the rescaling factor is obtained from the data as
96 > cut of 50 GeV, the rescaling factor is obtained from the MC as
97  
98   \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
99   \begin{center}
# Line 125 | Line 125 | leptons that have no simple correspondan
125   \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
126   neutrinos which is only partially compensated by the $K$ factor above.
127   \item The \met resolution is much worse than the dilepton $P_T$ resolution.
128 < When convoluted with a falling spectrum in the tails of \met, this result
128 > When convoluted with a falling spectrum in the tails of \met, this results
129   in a harder spectrum for \met than the original $P_T(\nu\nu)$.
130   \item The \met response in CMS is not exactly 1.  This causes a distortion
131   in the \met distribution that is not present in the $P_T(\ell\ell)$ distribution.
# Line 136 | Line 136 | of $P_T(\ell\ell)$ and $P_T(\nu\nu)$ do
136   sources.  These events can affect the background prediction.  Particularly
137   dangerous are high $P_T$ Drell Yan events that barely pass the \met$>$ 50
138   GeV selection.  They will tend to push the data-driven background prediction up.
139 + Therefore we estimate the number of DY events entering the background prediction
140 + using the $R_{out/in}$ method as described in Sec.~\ref{sec:othBG}.
141   \end{itemize}
142  
143   We have studied these effects in SM Monte Carlo, using a mixture of generator and
# Line 158 | Line 160 | under different assumptions.  See text f
160   4&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & Y          & 1.55  \\
161   5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
162   6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
163 < 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.18  \\
163 > 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.46  \\
164 > %%%NOTE: updated value 1.18 -> 1.46 since 2/3 DY events have been removed by updated analysis selections,
165 > %%%dpt/pt cut and general lepton veto
166   \hline
167   \end{tabular}
168   \end{center}
# Line 176 | Line 180 | Going from GEN to RECOSIM, the change in
180   % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
181   %for each 1.5\% change in \met response.}.  
182   Finally, contamination from non $t\bar{t}$
183 < events can have a significant impact on the BG prediction.  The changes between
184 < lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
185 < Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
186 < is statistically not well quantified).
183 > events can have a significant impact on the BG prediction.  
184 > %The changes between
185 > %lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
186 > %Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
187 > %is statistically not well quantified).
188  
189   An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
190   not include effects of spin correlations between the two top quarks.  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines