ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.6 by claudioc, Wed Nov 3 23:05:16 2010 UTC vs.
Revision 1.16 by benhoob, Thu Nov 11 16:43:32 2010 UTC

# Line 2 | Line 2
2   \label{sec:datadriven}
3   We have developed two data-driven methods to
4   estimate the background in the signal region.
5 < The first one explouts the fact that
5 > The first one exploits the fact that
6   \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
7   uncorrelated for the $t\bar{t}$ background
8   (Section~\ref{sec:abcd});  the second one
# Line 12 | Line 12 | nearly the same as the $P_T$ of the pair
12   from $W$-decays, which is reconstructed as \met in the
13   detector.
14  
15 < In 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
16 < the signal region.  The expectations from the LMO
17 < and LM1 SUSY benchmark points are 5.6 and
18 < 2.2 events respectively.
15 >
16   %{\color{red} I took these
17   %numbers from the twiki, rescaling from 11.06 to 30/pb.
18   %They seem too large...are they really right?}
# Line 25 | Line 22 | and LM1 SUSY benchmark points are 5.6 an
22   \label{sec:abcd}
23  
24   We find that in $t\bar{t}$ events \met and
25 < \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated.
26 < This is demonstrated in Figure~\ref{fig:uncor}.
25 > \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 > as demonstrated in Figure~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
# Line 53 | Line 50 | Our choice of ABCD regions is shown in F
50   The signal region is region D.  The expected number of events
51   in the four regions for the SM Monte Carlo, as well as the BG
52   prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
53 < luminosity of 30 pb$^{-1}$.  The ABCD method is accurate
54 < to about 10\%. {\color{red} Avi wants some statement about stability
55 < wrt changes in regions.  I am not sure that we have done it and
56 < I am not sure it is necessary (Claudio).}
53 > luminosity of 35 pb$^{-1}$.  The ABCD method is accurate
54 > to about 20\%.
55 > %{\color{red} Avi wants some statement about stability
56 > %wrt changes in regions.  I am not sure that we have done it and
57 > %I am not sure it is necessary (Claudio).}
58  
59   \begin{table}[htb]
60   \begin{center}
61   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
62 < 30 pb$^{-1}$ in the ABCD regions.}
63 < \begin{tabular}{|l|c|c|c|c||c|}
62 > 35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
63 > the signal region given by A $\times$ C / B. Here `SM other' is the sum
64 > of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
65 > $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
66 > \begin{tabular}{lccccc}
67 > \hline
68 >         sample                          &              A   &              B   &              C   &              D   &    A $\times$ C / B \\
69 > \hline
70 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
71 >   $Z^0$ + jets                          &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
72 >       SM other                          &           0.65   &           2.31   &           0.17   &           0.14   &           0.05  \\
73 > \hline
74 >    total SM MC                          &           8.61   &          36.54   &           5.05   &           1.41   &           1.19  \\
75   \hline
67 Sample   & A   & B    & C   & D   & AC/D \\ \hline
68 ttdil    & 6.9 & 28.6 & 4.2 & 1.0 & 1.0  \\
69 Zjets    & 0.0 & 1.3  & 0.1 & 0.1 & 0.0  \\
70 Other SM & 0.5 & 2.0  & 0.1 & 0.1 & 0.0  \\ \hline
71 total MC & 7.4 & 31.9 & 4.4 & 1.2 & 1.0 \\ \hline
76   \end{tabular}
77   \end{center}
78   \end{table}
# Line 89 | Line 93 | In practice one has to rescale the resul
93   to account for the fact that any dilepton selection must include a
94   moderate \met cut in order to reduce Drell Yan backgrounds.  This
95   is discussed in Section 5.3 of Reference~\cite{ref:ourvictory}; for a \met
96 < cut of 50 GeV, the rescaling factor is obtained from the data as
96 > cut of 50 GeV, the rescaling factor is obtained from the MC as
97  
98   \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
99   \begin{center}
# Line 98 | Line 102 | $ K = \frac{\int_0^{\infty} {\cal N}(\pt
102  
103  
104   Monte Carlo studies give values of $K$ that are typically between 1.5 and 1.6,
105 < depending on selection details.
105 > depending on selection details.  
106 > %%%TO BE REPLACED
107 > %Given the integrated luminosity of the
108 > %present dataset, the determination of $K$ in data is severely statistics
109 > %limited.  Thus, we take $K$ from $t\bar{t}$ Monte Carlo as
110 >
111 > %\begin{center}
112 > %$ K_{MC} = \frac{\int_0^{\infty} {\cal N}(\met)~~d\met~}{\int_{50}^{\infty} {\cal N}(\met)~~d\met~}$
113 > %\end{center}
114 >
115 > %\noindent {\color{red} For the 11 pb result we have used $K$ from data.}
116  
117   There are several effects that spoil the correspondance between \met and
118   $P_T(\ell\ell)$:
# Line 111 | Line 125 | leptons that have no simple correspondan
125   \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
126   neutrinos which is only partially compensated by the $K$ factor above.
127   \item The \met resolution is much worse than the dilepton $P_T$ resolution.
128 < When convoluted with a falling spectrum in the tails of \met, this result
128 > When convoluted with a falling spectrum in the tails of \met, this results
129   in a harder spectrum for \met than the original $P_T(\nu\nu)$.
130   \item The \met response in CMS is not exactly 1.  This causes a distortion
131   in the \met distribution that is not present in the $P_T(\ell\ell)$ distribution.
# Line 122 | Line 136 | of $P_T(\ell\ell)$ and $P_T(\nu\nu)$ do
136   sources.  These events can affect the background prediction.  Particularly
137   dangerous are high $P_T$ Drell Yan events that barely pass the \met$>$ 50
138   GeV selection.  They will tend to push the data-driven background prediction up.
139 + Therefore we estimate the number of DY events entering the background prediction
140 + using the $R_{out/in}$ method as described in Sec.~\ref{sec:othBG}.
141   \end{itemize}
142  
143   We have studied these effects in SM Monte Carlo, using a mixture of generator and
# Line 144 | Line 160 | under different assumptions.  See text f
160   4&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & Y          & 1.55  \\
161   5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
162   6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
163 < 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.18  \\
163 > 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.46  \\
164 > %%%NOTE: updated value 1.18 -> 1.46 since 2/3 DY events have been removed by updated analysis selections,
165 > %%%dpt/pt cut and general lepton veto
166   \hline
167   \end{tabular}
168   \end{center}
# Line 162 | Line 180 | Going from GEN to RECOSIM, the change in
180   % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
181   %for each 1.5\% change in \met response.}.  
182   Finally, contamination from non $t\bar{t}$
183 < events can have a significant impact on the BG prediction.  The changes between
184 < lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
185 < Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
186 < is statistically not well quantified).
183 > events can have a significant impact on the BG prediction.  
184 > %The changes between
185 > %lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
186 > %Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
187 > %is statistically not well quantified).
188  
189   An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
190   not include effects of spin correlations between the two top quarks.  
191   We have studied this effect at the generator level using Alpgen.  We find
192 < that the bias is a the few percent level.
192 > that the bias is at the few percent level.
193 >
194 > %%%TO BE REPLACED
195 > %Based on the results of Table~\ref{tab:victorybad}, we conclude that the
196 > %naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
197 > %be corrected by a factor of {\color{red} $ K_{\rm{fudge}} =1.2 \pm 0.3$
198 > %(We still need to settle on thie exact value of this.
199 > %For the 11 pb analysis it is taken as =1.)} . The quoted
200 > %uncertainty is based on the stability of the Monte Carlo tests under
201 > %variations of event selections, choices of \met algorithm, etc.
202 > %For example, we find that observed/predicted changes by roughly 0.1
203 > %for each 1.5\% change in the average \met response.  
204  
205   Based on the results of Table~\ref{tab:victorybad}, we conclude that the
206   naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
207 < be corrected by a factor of {\color{red} $1.2 \pm 0.3$ (We need to talk
208 < about this)} . The quoted
209 < uncertainty is based on the stability of the Monte Carlo tests under
207 > be corrected by a factor of $ K_C = X \pm Y$.
208 > The value of this correction factor as well as the systematic uncertainty
209 > will be assessed using 38X ttbar madgraph MC. In the following we use
210 > $K_C = 1$ for simplicity. Based on previous MC studies we foresee a correction
211 > factor of $K_C \approx 1.2 - 1.5$, and we will assess an uncertainty
212 > based on the stability of the Monte Carlo tests under
213   variations of event selections, choices of \met algorithm, etc.
214 + For example, we find that observed/predicted changes by roughly 0.1
215 + for each 1.5\% change in the average \met response.
216  
217  
218  
# Line 203 | Line 238 | in the ABCD method but not in the $P_T(\
238  
239   The LM points are benchmarks for SUSY analyses at CMS.  The effects
240   of signal contaminations for a couple such points are summarized
241 < in Table~\ref{tab:sigcontABCD} and~\ref{tab:sigcontPT}.
207 < Signal contamination is definitely an important
241 > in Table~\ref{tab:sigcont}. Signal contamination is definitely an important
242   effect for these two LM points, but it does not totally hide the
243   presence of the signal.
244  
245  
246   \begin{table}[htb]
247   \begin{center}
248 < \caption{\label{tab:sigcontABCD} Effects of signal contamination
249 < for the background predictions of the ABCD method including LM0 or
250 < LM1.  Results
251 < are normalized to 30 pb$^{-1}$.}
252 < \begin{tabular}{|c||c|c||c|c|}
219 < \hline
220 < SM         & LM0         & BG Prediction & LM1          & BG Prediction \\
221 < Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
222 < 1.2        & 5.6         & 3.7           & 2.2          & 1.3 \\
248 > \caption{\label{tab:sigcont} Effects of signal contamination
249 > for the two data-driven background estimates. The three columns give
250 > the expected yield in the signal region and the background estimates
251 > using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.}
252 > \begin{tabular}{lccc}
253   \hline
254 < \end{tabular}
255 < \end{center}
256 < \end{table}
257 <
258 < \begin{table}[htb]
229 < \begin{center}
230 < \caption{\label{tab:sigcontPT} Effects of signal contamination
231 < for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
232 < LM1.  Results
233 < are normalized to 30 pb$^{-1}$. {\color{red} Does this BG prediction include
234 < the fudge factor of 1.4 or watever because the method is not perfect.}}
235 < \begin{tabular}{|c||c|c||c|c|}
236 < \hline
237 < SM         & LM0         & BG Prediction & LM1          & BG Prediction \\
238 < Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
239 < 1.2        & 5.6         & 2.2           & 2.2          & 1.5 \\
254 >            &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
255 > \hline
256 > SM only     &      1.41       &      1.19    &             0.96  \\
257 > SM + LM0    &      7.88       &      4.24    &             2.28  \\
258 > SM + LM1    &      3.98       &      1.53    &             1.44  \\
259   \hline
260   \end{tabular}
261   \end{center}
262   \end{table}
263  
264 +
265 +
266 + %\begin{table}[htb]
267 + %\begin{center}
268 + %\caption{\label{tab:sigcontABCD} Effects of signal contamination
269 + %for the background predictions of the ABCD method including LM0 or
270 + %LM1.  Results
271 + %are normalized to 30 pb$^{-1}$.}
272 + %\begin{tabular}{|c|c||c|c||c|c|}
273 + %\hline
274 + %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
275 + %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
276 + %1.2        & 1.0            & 6.8          & 3.7           & 3.4          & 1.3 \\
277 + %\hline
278 + %\end{tabular}
279 + %\end{center}
280 + %\end{table}
281 +
282 + %\begin{table}[htb]
283 + %\begin{center}
284 + %\caption{\label{tab:sigcontPT} Effects of signal contamination
285 + %for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
286 + %LM1.  Results
287 + %are normalized to 30 pb$^{-1}$.}
288 + %\begin{tabular}{|c|c||c|c||c|c|}
289 + %\hline
290 + %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
291 + %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
292 + %1.2        & 1.0            & 6.8          & 2.2           & 3.4          & 1.5 \\
293 + %\hline
294 + %\end{tabular}
295 + %\end{center}
296 + %\end{table}
297 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines