ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.20 by benhoob, Sat Nov 13 06:48:02 2010 UTC vs.
Revision 1.30 by benhoob, Thu Dec 2 15:07:05 2010 UTC

# Line 3 | Line 3
3   We have developed two data-driven methods to
4   estimate the background in the signal region.
5   The first one exploits the fact that
6 < \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
6 > SumJetPt and \met$/\sqrt{\rm SumJetPt}$ are nearly
7   uncorrelated for the $t\bar{t}$ background
8   (Section~\ref{sec:abcd});  the second one
9   is based on the fact that in $t\bar{t}$ the
# Line 21 | Line 21 | detector.
21   \subsection{ABCD method}
22   \label{sec:abcd}
23  
24 < We find that in $t\bar{t}$ events \met and
24 > We find that in $t\bar{t}$ events SumJetPt and
25   \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26   as demonstrated in Figure~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
30 < \begin{figure}[tb]
30 > %\begin{figure}[bht]
31 > %\begin{center}
32 > %\includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
33 > %\caption{\label{fig:uncor}\protect Distributions of SumJetPt
34 > %in MC $t\bar{t}$ events for different intervals of
35 > %MET$/\sqrt{\rm SumJetPt}$.}
36 > %\end{center}
37 > %\end{figure}
38 >
39 > \begin{figure}[bht]
40   \begin{center}
41 < \includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
41 > \includegraphics[width=0.75\linewidth]{uncor.png}
42   \caption{\label{fig:uncor}\protect Distributions of SumJetPt
43   in MC $t\bar{t}$ events for different intervals of
44 < MET$/\sqrt{\rm SumJetPt}$.}
44 > MET$/\sqrt{\rm SumJetPt}$. h1, h2, and h3 refer to the MET$/\sqrt{\rm SumJetPt}$
45 > intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively.}
46   \end{center}
47   \end{figure}
48  
49 < \begin{figure}[bt]
49 > \begin{figure}[tb]
50   \begin{center}
51   \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
52 < \caption{\label{fig:abcdMC}\protect Distributions of SumJetPt
53 < vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo.  Here we also
44 < show our choice of ABCD regions.}
52 > \caption{\label{fig:abcdMC}\protect Distributions of MET$/\sqrt{\rm SumJetPt}$ vs.
53 > SumJetPt for SM Monte Carlo.  Here we also show our choice of ABCD regions.}
54   \end{center}
55   \end{figure}
56  
57  
58   Our choice of ABCD regions is shown in Figure~\ref{fig:abcdMC}.
59   The signal region is region D.  The expected number of events
60 < in the four regions for the SM Monte Carlo, as well as the BG
61 < prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
62 < luminosity of 35 pb$^{-1}$.  The ABCD method is accurate
63 < to about 20\%.
60 > in the four regions for the SM Monte Carlo, as well as the background
61 > prediction A $\times$ C / B are given in Table~\ref{tab:abcdMC} for an integrated
62 > luminosity of 35 pb$^{-1}$.  The ABCD method with chosen boundaries is accurate
63 > to about 20\%, and we assess a corresponding systematic uncertainty.
64 >
65 > %As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties
66 > %by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty,
67 > %which we take as $\pm$5\% for SumJetPt and $\pm$2.5\% for MET/$\sqrt{\rm SumJetPt}$, since the
68 > %uncertainty on this quantity partially cancels due to the fact that it is a ratio of correlated
69 > %quantities. Based on these studies we assess a correction factor $k_{ABCD} = 1.2 \pm 0.2$ to the
70 > %predicted yield using the ABCD method.
71 >
72 >
73   %{\color{red} Avi wants some statement about stability
74   %wrt changes in regions.  I am not sure that we have done it and
75   %I am not sure it is necessary (Claudio).}
76  
77 < \begin{table}[htb]
77 > \begin{table}[ht]
78   \begin{center}
79   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
80   35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
# Line 65 | Line 83 | of non-dileptonic $t\bar{t}$ decays, $W^
83   $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
84   \begin{tabular}{lccccc}
85   \hline
86 <         sample                          &              A   &              B   &              C   &              D   &    A $\times$ C / B \\
86 >              sample   &                   A   &                   B   &                   C   &                   D   &                      A $\times$ C / B  \\
87 > \hline
88 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &   8.27  $\pm$  0.18   &  32.16  $\pm$  0.35   &   4.69  $\pm$  0.13   &   1.05  $\pm$  0.06   &   1.21  $\pm$  0.04  \\
89 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &   0.22  $\pm$  0.11   &   1.54  $\pm$  0.29   &   0.05  $\pm$  0.05   &   0.16  $\pm$  0.09   &   0.01  $\pm$  0.01  \\
90 >            SM other                     &   0.54  $\pm$  0.03   &   2.28  $\pm$  0.12   &   0.23  $\pm$  0.03   &   0.07  $\pm$  0.01   &   0.05  $\pm$  0.01  \\
91   \hline
92 +         total SM MC                     &   9.03  $\pm$  0.21   &  35.97  $\pm$  0.46   &   4.97  $\pm$  0.15   &   1.29  $\pm$  0.11   &   1.25  $\pm$  0.05  \\
93 + \hline
94 + \end{tabular}
95 + \end{center}
96 + \end{table}
97 +
98  
99  
100 + \begin{table}[ht]
101 + \begin{center}
102 + \caption{\label{tab:abcdsyst}
103 + {\bf \color{red} Do we need this study at all? Observed/predicted is consistent within stat uncertainties as the boundaries are varied- is it enough to simply state this fact in the text??? }
104 + Results of the systematic study of the ABCD method by varying the boundaries
105 + between the ABCD regions shown in Fig.~\ref{fig:abcdMC}. Here $x_1$ is the lower SumJetPt boundary and
106 + $x_2$ is the boundary separating regions A and B from C and D, their nominal values are 125 and 300~GeV,
107 + respectively. $y_1$ is the lower MET/$\sqrt{\rm SumJetPt}$ boundary and
108 + $y_2$ is the boundary separating regions B and C from A and D, their nominal values are 4.5 and 8.5~GeV$^{1/2}$,
109 + respectively.}
110 + \begin{tabular}{cccc|c}
111   \hline
112 < $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
74 < $Z^0 \rightarrow \ell^{+}\ell^{-}$       &           0.03   &           1.47   &           0.10   &           0.10   &           0.00  \\
75 <       SM other                          &           0.65   &           2.31   &           0.17   &           0.14   &           0.05  \\
112 > $x_1$   &   $x_2$ & $y_1$   &   $y_2$ & Observed/Predicted \\
113   \hline
114 <    total SM MC                          &           8.63   &          36.85   &           5.07   &           1.43   &           1.19  \\
114 > nominal & nominal & nominal & nominal & $1.20 \pm 0.12$    \\
115 > +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.38 \pm 0.15$    \\
116 > +5\%    & +5\%    & nominal & nominal & $1.31 \pm 0.14$    \\
117 > nominal & nominal & +2.5\%  & +2.5\%  & $1.25 \pm 0.13$    \\
118 > nominal & +5\%    & nominal & +2.5\%  & $1.32 \pm 0.14$    \\
119 > nominal & -5\%    & nominal & -2.5\%  & $1.16 \pm 0.09$    \\
120 > -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.21 \pm 0.11$    \\
121 > +5\%    & +5\%    & -2.5\%  & -2.5\%  & $1.26 \pm 0.12$    \\
122   \hline
123   \end{tabular}
124   \end{center}
# Line 121 | Line 165 | There are several effects that spoil the
165   $P_T(\ell\ell)$:
166   \begin{itemize}
167   \item $Ws$ in top events are polarized.  Neutrinos are emitted preferentially
168 < forward in the $W$ rest frame, thus the $P_T(\nu\nu)$ distribution is harder
168 > parallel to the $W$ velocity while charged leptons are emitted prefertially
169 > anti-parallel. Thus the $P_T(\nu\nu)$ distribution is harder
170   than the $P_T(\ell\ell)$ distribution for top dilepton events.
171   \item The lepton selections results in $P_T$ and $\eta$ cuts on the individual
172   leptons that have no simple correspondance to the neutrino requirements.
# Line 151 | Line 196 | The results are summarized in Table~\ref
196  
197   \begin{table}[htb]
198   \begin{center}
199 < \caption{\label{tab:victorybad} Test of the data driven method in Monte Carlo
199 > \caption{\label{tab:victorybad}
200 > {\bf \color{red} Need to either update this with 38X MC  or remove it }
201 > Test of the data driven method in Monte Carlo
202   under different assumptions.  See text for details.}
203   \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
204   \hline
205   & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & Z veto & \met $>$ 50& obs/pred \\
206 < & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &  \\ \hline
206 > & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &       \\ \hline
207   1&Y                        &     N          &   N      &  GEN    &   N             &   N    & N          & 1.90  \\
208   2&Y                        &     N          &   N      &  GEN    &   Y             &   N    & N          & 1.64  \\
209   3&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & N          & 1.59  \\
# Line 164 | Line 211 | under different assumptions.  See text f
211   5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
212   6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
213   7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.38  \\
167 %%%NOTE: updated value 1.18 -> 1.46 since 2/3 DY events have been removed by updated analysis selections,
168 %%%dpt/pt cut and general lepton veto
214   \hline
215   \end{tabular}
216   \end{center}
217   \end{table}
218  
219  
220 + \begin{table}[htb]
221 + \begin{center}
222 + \caption{\label{tab:victorysyst}
223 + Summary of uncertainties in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton.
224 + In the first table, `up' and `down' refer to shifting the hadronic energy scale up and down by 5\%. In the second table, the quoted value
225 + refers to the amount of additional smearing of the MET, as discussed in the text. In the third table, the normalization of all backgrounds
226 + other than $t\bar{t} \to$~dilepton is varied.
227 + {\bf \color{red} Should I remove `observed' and `predicted' and show only the ratio? }}
228 +
229 + \begin{tabular}{ lcccc }
230 + \hline
231 +       MET scale  &      Predicted       &       Observed       &       Obs/pred       \\
232 + \hline
233 +        nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
234 +            up    &  0.92 $ \pm $ 0.11   &  1.53 $ \pm $ 0.12   &  1.66 $ \pm $ 0.23   \\
235 +          down    &  0.81 $ \pm $ 0.07   &  1.08 $ \pm $ 0.11   &  1.32 $ \pm $ 0.17   \\
236 + \hline
237 +
238 + \hline
239 +   MET smearing   &      Predicted       &       Observed        &       Obs/pred      \\
240 + \hline
241 +        nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
242 +           10\%   &  0.90 $ \pm $ 0.11   &  1.30 $ \pm $ 0.11   &  1.44 $ \pm $ 0.21   \\
243 +           20\%   &  0.84 $ \pm $ 0.07   &  1.36 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
244 +           30\%   &  1.05 $ \pm $ 0.18   &  1.32 $ \pm $ 0.11   &  1.27 $ \pm $ 0.24   \\
245 +           40\%   &  0.85 $ \pm $ 0.07   &  1.37 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
246 +           50\%   &  1.08 $ \pm $ 0.18   &  1.36 $ \pm $ 0.11   &  1.26 $ \pm $ 0.24   \\
247 + \hline
248 +
249 + \hline
250 +  non-$t\bar{t} \to$~dilepton scale factor   &          Predicted   &           Observed   &           Obs/pred   \\
251 + \hline
252 +   ttdil only                                &  0.77 $ \pm $ 0.07   &  1.05 $ \pm $ 0.06   &  1.36 $ \pm $ 0.14   \\
253 +   nominal                                   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
254 +   double non-ttdil yield                    &  1.06 $ \pm $ 0.18   &  1.52 $ \pm $ 0.20   &  1.43 $ \pm $ 0.30   \\
255 + \hline
256 + \end{tabular}
257 + \end{center}
258 + \end{table}
259 +
260 +
261 +
262   The largest discrepancy between prediction and observation occurs on the first
263   line of Table~\ref{tab:victorybad}, {\em i.e.}, at the generator level with no
264   cuts.  We have verified that this effect is due to the polarization of
# Line 194 | Line 281 | not include effects of spin correlations
281   We have studied this effect at the generator level using Alpgen.  We find
282   that the bias is at the few percent level.
283  
197 %%%TO BE REPLACED
198 %Based on the results of Table~\ref{tab:victorybad}, we conclude that the
199 %naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
200 %be corrected by a factor of {\color{red} $ K_{\rm{fudge}} =1.2 \pm 0.3$
201 %(We still need to settle on thie exact value of this.
202 %For the 11 pb analysis it is taken as =1.)} . The quoted
203 %uncertainty is based on the stability of the Monte Carlo tests under
204 %variations of event selections, choices of \met algorithm, etc.
205 %For example, we find that observed/predicted changes by roughly 0.1
206 %for each 1.5\% change in the average \met response.  
207
284   Based on the results of Table~\ref{tab:victorybad}, we conclude that the
285 < naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
286 < be corrected by a factor of $ K_C = X \pm Y$.
211 < The value of this correction factor as well as the systematic uncertainty
212 < will be assessed using 38X ttbar madgraph MC. In the following we use
213 < $K_C = 1$ for simplicity. Based on previous MC studies we foresee a correction
214 < factor of $K_C \approx 1.2 - 1.5$, and we will assess an uncertainty
215 < based on the stability of the Monte Carlo tests under
216 < variations of event selections, choices of \met algorithm, etc.
217 < For example, we find that observed/predicted changes by roughly 0.1
218 < for each 1.5\% change in the average \met response.
285 > naive data-driven background estimate based on $P_T{(\ell\ell)}$ needs to
286 > be corrected by a factor of $ K_C = 1.4 \pm 0.2(stat)$.
287  
288 + The 2 dominant sources of systematic uncertainty in $K_C$ are due to non-$t\bar{t} \to$~dilepton backgrounds,
289 + and the MET scale and resolution uncertainties. The impact of non-$t\bar{t}$-dilepton background is assessed
290 + by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton, as shown in Table~\ref{table_kc}.
291 + The systematic is assessed as the larger of the differences between the nominal $K_C$ value and the values
292 + obtained using only $t\bar{t} \to$~dilepton MC and obtained by doubling the non $t\bar{t} \to$~dilepton component,
293 + giving an uncertainty of $0.04$.
294 +
295 + The uncertainty in $K_C$ due to the MET scale uncertainty is assessed by varying the hadronic energy scale using
296 + the same method as in~\ref{} and checking how much $K_C$ changes, as summarized in Table~\ref{tab:victorysyst}.
297 + This gives an uncertainty of 0.3. We also assess the impact of the MET resolution uncertainty on $K_C$ by applying
298 + a random smearing to the MET. For each event, we determine the expected MET resolution based on the sumJetPt, and
299 + smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%. The results show that
300 + $K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty.
301  
302 + Incorporating all the statistical and systematic uncertainties we find $K_C = 1.4 \pm 0.4$.
303  
304   \subsection{Signal Contamination}
305   \label{sec:sigcont}
# Line 256 | Line 338 | using the ABCD and $P_T(\ell \ell)$ meth
338   \hline
339              &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
340   \hline
341 < SM only     &      1.43       &      1.19    &             1.03  \\
342 < SM + LM0    &      7.90       &      4.23    &             2.35  \\
343 < SM + LM1    &      4.00       &      1.53    &             1.51  \\
341 > SM only     &       1.29      &      1.25    &           0.92    \\
342 > SM + LM0    &       7.57      &      4.44    &           1.96    \\
343 > SM + LM1    &       3.85      &      1.60    &           1.43    \\
344   \hline
345   \end{tabular}
346   \end{center}
347   \end{table}
348  
267
268
269 %\begin{table}[htb]
270 %\begin{center}
271 %\caption{\label{tab:sigcontABCD} Effects of signal contamination
272 %for the background predictions of the ABCD method including LM0 or
273 %LM1.  Results
274 %are normalized to 30 pb$^{-1}$.}
275 %\begin{tabular}{|c|c||c|c||c|c|}
276 %\hline
277 %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
278 %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
279 %1.2        & 1.0            & 6.8          & 3.7           & 3.4          & 1.3 \\
280 %\hline
281 %\end{tabular}
282 %\end{center}
283 %\end{table}
284
285 %\begin{table}[htb]
286 %\begin{center}
287 %\caption{\label{tab:sigcontPT} Effects of signal contamination
288 %for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
289 %LM1.  Results
290 %are normalized to 30 pb$^{-1}$.}
291 %\begin{tabular}{|c|c||c|c||c|c|}
292 %\hline
293 %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
294 %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
295 %1.2        & 1.0            & 6.8          & 2.2           & 3.4          & 1.5 \\
296 %\hline
297 %\end{tabular}
298 %\end{center}
299 %\end{table}
300

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines