ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.19 by benhoob, Sat Nov 13 06:42:40 2010 UTC vs.
Revision 1.27 by benhoob, Thu Dec 2 11:19:00 2010 UTC

# Line 3 | Line 3
3   We have developed two data-driven methods to
4   estimate the background in the signal region.
5   The first one exploits the fact that
6 < \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
6 > SumJetPt and \met$/\sqrt{\rm SumJetPt}$ are nearly
7   uncorrelated for the $t\bar{t}$ background
8   (Section~\ref{sec:abcd});  the second one
9   is based on the fact that in $t\bar{t}$ the
# Line 21 | Line 21 | detector.
21   \subsection{ABCD method}
22   \label{sec:abcd}
23  
24 < We find that in $t\bar{t}$ events \met and
24 > We find that in $t\bar{t}$ events SumJetPt and
25   \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26   as demonstrated in Figure~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
30 < \begin{figure}[tb]
30 > %\begin{figure}[bht]
31 > %\begin{center}
32 > %\includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
33 > %\caption{\label{fig:uncor}\protect Distributions of SumJetPt
34 > %in MC $t\bar{t}$ events for different intervals of
35 > %MET$/\sqrt{\rm SumJetPt}$.}
36 > %\end{center}
37 > %\end{figure}
38 >
39 > \begin{figure}[bht]
40   \begin{center}
41 < \includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
41 > \includegraphics[width=0.75\linewidth]{uncor.png}
42   \caption{\label{fig:uncor}\protect Distributions of SumJetPt
43   in MC $t\bar{t}$ events for different intervals of
44 < MET$/\sqrt{\rm SumJetPt}$.}
44 > MET$/\sqrt{\rm SumJetPt}$. h1, h2, and h3 refer to the MET$/\sqrt{\rm SumJetPt}$
45 > intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively.}
46   \end{center}
47   \end{figure}
48  
49 < \begin{figure}[bt]
49 > \begin{figure}[tb]
50   \begin{center}
51   \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
52 < \caption{\label{fig:abcdMC}\protect Distributions of SumJetPt
53 < vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo.  Here we also
44 < show our choice of ABCD regions.}
52 > \caption{\label{fig:abcdMC}\protect Distributions of MET$/\sqrt{\rm SumJetPt}$ vs.
53 > SumJetPt for SM Monte Carlo.  Here we also show our choice of ABCD regions.}
54   \end{center}
55   \end{figure}
56  
# Line 50 | Line 59 | Our choice of ABCD regions is shown in F
59   The signal region is region D.  The expected number of events
60   in the four regions for the SM Monte Carlo, as well as the BG
61   prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
62 < luminosity of 35 pb$^{-1}$.  The ABCD method is accurate
63 < to about 20\%.
62 > luminosity of 35 pb$^{-1}$.  The ABCD method with chosen boundaries is accurate
63 > to about 20\%. As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties
64 > by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty,
65 > which we take as $\pm$5\% for SumJetPt and $\pm$2.5\% for MET/$\sqrt{\rm SumJetPt}$, since the
66 > uncertainty on this quantity partially cancels due to the fact that it is a ratio of correlated
67 > quantities. Based on these studies we assess a correction factor $k_{ABCD} = 1.2 \pm 0.2$ to the
68 > predicted yield using the ABCD method.
69 >
70 >
71   %{\color{red} Avi wants some statement about stability
72   %wrt changes in regions.  I am not sure that we have done it and
73   %I am not sure it is necessary (Claudio).}
74  
75 < \begin{table}[htb]
75 > \begin{table}[ht]
76   \begin{center}
77   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
78   35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
# Line 65 | Line 81 | of non-dileptonic $t\bar{t}$ decays, $W^
81   $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
82   \begin{tabular}{lccccc}
83   \hline
84 <         sample                          &              A   &              B   &              C   &              D   &    A $\times$ C / B \\
84 >              sample   &                   A   &                   B   &                   C   &                   D   &                      A $\times$ C / B  \\
85 > \hline
86 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &   8.27  $\pm$  0.18   &  32.16  $\pm$  0.35   &   4.69  $\pm$  0.13   &   1.05  $\pm$  0.06   &   1.21  $\pm$  0.04  \\
87 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &   0.22  $\pm$  0.11   &   1.54  $\pm$  0.29   &   0.05  $\pm$  0.05   &   0.16  $\pm$  0.09   &   0.01  $\pm$  0.01  \\
88 >            SM other                     &   0.54  $\pm$  0.03   &   2.28  $\pm$  0.12   &   0.23  $\pm$  0.03   &   0.07  $\pm$  0.01   &   0.05  $\pm$  0.01  \\
89   \hline
90 +         total SM MC                     &   9.03  $\pm$  0.21   &  35.97  $\pm$  0.46   &   4.97  $\pm$  0.15   &   1.29  $\pm$  0.11   &   1.25  $\pm$  0.05  \\
91 + \hline
92 + \end{tabular}
93 + \end{center}
94 + \end{table}
95 +
96  
97  
98 + \begin{table}[ht]
99 + \begin{center}
100 + \caption{\label{tab:abcdsyst}
101 + {\bf \color{red} Do we need this study at all? Observed/predicted is consistent within stat uncertainties as the boundaries are varied- is it enough to simply state this fact in the text??? }
102 + Results of the systematic study of the ABCD method by varying the boundaries
103 + between the ABCD regions shown in Fig.~\ref{fig:abcdMC}. Here $x_1$ is the lower SumJetPt boundary and
104 + $x_2$ is the boundary separating regions A and B from C and D, their nominal values are 125 and 300~GeV,
105 + respectively. $y_1$ is the lower MET/$\sqrt{\rm SumJetPt}$ boundary and
106 + $y_2$ is the boundary separating regions B and C from A and D, their nominal values are 4.5 and 8.5~GeV$^{1/2}$,
107 + respectively.}
108 + \begin{tabular}{cccc|c}
109   \hline
110 < $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
74 < $Z^0 \rightarrow \ell^{+}\ell^{-}$       &           0.03   &           1.47   &           0.10   &           0.10   &           0.00  \\
75 <       SM other                          &           0.65   &           2.31   &           0.17   &           0.14   &           0.05  \\
110 > $x_1$   &   $x_2$ & $y_1$   &   $y_2$ & Observed/Predicted \\
111   \hline
112 <    total SM MC                          &           8.63   &          36.85   &           5.07   &           1.43   &           1.19  \\
112 > nominal & nominal & nominal & nominal & $1.20 \pm 0.12$    \\
113 > +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.38 \pm 0.15$    \\
114 > +5\%    & +5\%    & nominal & nominal & $1.31 \pm 0.14$    \\
115 > nominal & nominal & +2.5\%  & +2.5\%  & $1.25 \pm 0.13$    \\
116 > nominal & +5\%    & nominal & +2.5\%  & $1.32 \pm 0.14$    \\
117 > nominal & -5\%    & nominal & -2.5\%  & $1.16 \pm 0.09$    \\
118 > -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.21 \pm 0.11$    \\
119 > +5\%    & +5\%    & -2.5\%  & -2.5\%  & $1.26 \pm 0.12$    \\
120   \hline
121   \end{tabular}
122   \end{center}
# Line 121 | Line 163 | There are several effects that spoil the
163   $P_T(\ell\ell)$:
164   \begin{itemize}
165   \item $Ws$ in top events are polarized.  Neutrinos are emitted preferentially
166 < forward in the $W$ rest frame, thus the $P_T(\nu\nu)$ distribution is harder
166 > parallel to the $W$ velocity while charged leptons are emitted prefertially
167 > anti-parallel. Thus the $P_T(\nu\nu)$ distribution is harder
168   than the $P_T(\ell\ell)$ distribution for top dilepton events.
169   \item The lepton selections results in $P_T$ and $\eta$ cuts on the individual
170   leptons that have no simple correspondance to the neutrino requirements.
# Line 151 | Line 194 | The results are summarized in Table~\ref
194  
195   \begin{table}[htb]
196   \begin{center}
197 < \caption{\label{tab:victorybad} Test of the data driven method in Monte Carlo
197 > \caption{\label{tab:victorybad}
198 > {\bf \color{red} Need to either update this with 38X MC, or replace it with the systematic studies varying the non-ttdil background yield and jet/met scale. }
199 > Test of the data driven method in Monte Carlo
200   under different assumptions.  See text for details.}
201   \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
202   \hline
# Line 251 | Line 296 | presence of the signal.
296   \caption{\label{tab:sigcont} Effects of signal contamination
297   for the two data-driven background estimates. The three columns give
298   the expected yield in the signal region and the background estimates
299 < using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.
255 < {\color{red} \bf UPDATE RESULTS WITH DY SAMPLES.}}
299 > using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.}
300   \begin{tabular}{lccc}
301   \hline
302              &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
303   \hline
304 < SM only     &      1.43       &      1.19    &             1.03  \\
305 < SM + LM0    &      7.90       &      4.23    &             2.35  \\
306 < SM + LM1    &      4.00       &      1.53    &             1.51  \\
304 > SM only     &       1.29      &      1.25    &           0.92    \\
305 > SM + LM0    &       7.57      &      4.44    &           1.96    \\
306 > SM + LM1    &       3.85      &      1.60    &           1.43    \\
307   \hline
308   \end{tabular}
309   \end{center}
310   \end{table}
311  
268
269
270 %\begin{table}[htb]
271 %\begin{center}
272 %\caption{\label{tab:sigcontABCD} Effects of signal contamination
273 %for the background predictions of the ABCD method including LM0 or
274 %LM1.  Results
275 %are normalized to 30 pb$^{-1}$.}
276 %\begin{tabular}{|c|c||c|c||c|c|}
277 %\hline
278 %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
279 %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
280 %1.2        & 1.0            & 6.8          & 3.7           & 3.4          & 1.3 \\
281 %\hline
282 %\end{tabular}
283 %\end{center}
284 %\end{table}
285
286 %\begin{table}[htb]
287 %\begin{center}
288 %\caption{\label{tab:sigcontPT} Effects of signal contamination
289 %for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
290 %LM1.  Results
291 %are normalized to 30 pb$^{-1}$.}
292 %\begin{tabular}{|c|c||c|c||c|c|}
293 %\hline
294 %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
295 %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
296 %1.2        & 1.0            & 6.8          & 2.2           & 3.4          & 1.5 \\
297 %\hline
298 %\end{tabular}
299 %\end{center}
300 %\end{table}
301

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines