ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.3 by claudioc, Fri Oct 29 04:13:41 2010 UTC vs.
Revision 1.16 by benhoob, Thu Nov 11 16:43:32 2010 UTC

# Line 2 | Line 2
2   \label{sec:datadriven}
3   We have developed two data-driven methods to
4   estimate the background in the signal region.
5 < The first one explouts the fact that
5 > The first one exploits the fact that
6   \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
7   uncorrelated for the $t\bar{t}$ background
8   (Section~\ref{sec:abcd});  the second one
# Line 12 | Line 12 | nearly the same as the $P_T$ of the pair
12   from $W$-decays, which is reconstructed as \met in the
13   detector.
14  
15 < In 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
16 < the signal region.  The expectations from the LMO
17 < and LM1 SUSY benchmark points are 15.1 and
18 < 6.0 events respectively. {\color{red} I took these
19 < numbers from the twiki, rescaling from 11.06 to 30/pb.
20 < They seem too large...are they really right?}
15 >
16 > %{\color{red} I took these
17 > %numbers from the twiki, rescaling from 11.06 to 30/pb.
18 > %They seem too large...are they really right?}
19  
20  
21   \subsection{ABCD method}
22   \label{sec:abcd}
23  
24   We find that in $t\bar{t}$ events \met and
25 < \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated.
26 < This is demonstrated in Figure~\ref{fig:uncor}.
25 > \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 > as demonstrated in Figure~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
# Line 43 | Line 41 | MET$/\sqrt{\rm SumJetPt}$.}
41   \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
42   \caption{\label{fig:abcdMC}\protect Distributions of SumJetPt
43   vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo.  Here we also
44 < show our choice of ABCD regions. {\color{red} Derek, I
47 < do not know if this is SM or $t\bar{t}$ only.}}
44 > show our choice of ABCD regions.}
45   \end{center}
46   \end{figure}
47  
# Line 53 | Line 50 | Our choice of ABCD regions is shown in F
50   The signal region is region D.  The expected number of events
51   in the four regions for the SM Monte Carlo, as well as the BG
52   prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
53 < luminosity of 30 pb$^{-1}$.  The ABCD method is accurate
54 < to about 10\%.
53 > luminosity of 35 pb$^{-1}$.  The ABCD method is accurate
54 > to about 20\%.
55 > %{\color{red} Avi wants some statement about stability
56 > %wrt changes in regions.  I am not sure that we have done it and
57 > %I am not sure it is necessary (Claudio).}
58  
59   \begin{table}[htb]
60   \begin{center}
61   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
62 < 30 pb$^{-1}$ in the ABCD regions.}
63 < \begin{tabular}{|l|c|c|c|c||c|}
62 > 35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
63 > the signal region given by A $\times$ C / B. Here `SM other' is the sum
64 > of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
65 > $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
66 > \begin{tabular}{lccccc}
67 > \hline
68 >         sample                          &              A   &              B   &              C   &              D   &    A $\times$ C / B \\
69 > \hline
70 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
71 >   $Z^0$ + jets                          &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
72 >       SM other                          &           0.65   &           2.31   &           0.17   &           0.14   &           0.05  \\
73 > \hline
74 >    total SM MC                          &           8.61   &          36.54   &           5.05   &           1.41   &           1.19  \\
75   \hline
65 Sample   & A   & B    & C   & D   & AC/D \\ \hline
66 ttdil    & 6.9 & 28.6 & 4.2 & 1.0 & 1.0  \\
67 Zjets    & 0.0 & 1.3  & 0.1 & 0.1 & 0.0  \\
68 Other SM & 0.5 & 2.0  & 0.1 & 0.1 & 0.0  \\ \hline
69 total MC & 7.4 & 31.9 & 4.4 & 1.2 & 1.0 \\ \hline
76   \end{tabular}
77   \end{center}
78   \end{table}
# Line 87 | Line 93 | In practice one has to rescale the resul
93   to account for the fact that any dilepton selection must include a
94   moderate \met cut in order to reduce Drell Yan backgrounds.  This
95   is discussed in Section 5.3 of Reference~\cite{ref:ourvictory}; for a \met
96 < cut of 50 GeV, the rescaling factor is obtained from the data as
96 > cut of 50 GeV, the rescaling factor is obtained from the MC as
97  
98   \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
99   \begin{center}
# Line 96 | Line 102 | $ K = \frac{\int_0^{\infty} {\cal N}(\pt
102  
103  
104   Monte Carlo studies give values of $K$ that are typically between 1.5 and 1.6,
105 < depending on selection details.
105 > depending on selection details.  
106 > %%%TO BE REPLACED
107 > %Given the integrated luminosity of the
108 > %present dataset, the determination of $K$ in data is severely statistics
109 > %limited.  Thus, we take $K$ from $t\bar{t}$ Monte Carlo as
110 >
111 > %\begin{center}
112 > %$ K_{MC} = \frac{\int_0^{\infty} {\cal N}(\met)~~d\met~}{\int_{50}^{\infty} {\cal N}(\met)~~d\met~}$
113 > %\end{center}
114 >
115 > %\noindent {\color{red} For the 11 pb result we have used $K$ from data.}
116  
117   There are several effects that spoil the correspondance between \met and
118   $P_T(\ell\ell)$:
# Line 109 | Line 125 | leptons that have no simple correspondan
125   \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
126   neutrinos which is only partially compensated by the $K$ factor above.
127   \item The \met resolution is much worse than the dilepton $P_T$ resolution.
128 < When convoluted with a falling spectrum in the tails of \met, this result
128 > When convoluted with a falling spectrum in the tails of \met, this results
129   in a harder spectrum for \met than the original $P_T(\nu\nu)$.
130   \item The \met response in CMS is not exactly 1.  This causes a distortion
131   in the \met distribution that is not present in the $P_T(\ell\ell)$ distribution.
# Line 120 | Line 136 | of $P_T(\ell\ell)$ and $P_T(\nu\nu)$ do
136   sources.  These events can affect the background prediction.  Particularly
137   dangerous are high $P_T$ Drell Yan events that barely pass the \met$>$ 50
138   GeV selection.  They will tend to push the data-driven background prediction up.
139 + Therefore we estimate the number of DY events entering the background prediction
140 + using the $R_{out/in}$ method as described in Sec.~\ref{sec:othBG}.
141   \end{itemize}
142  
143   We have studied these effects in SM Monte Carlo, using a mixture of generator and
# Line 132 | Line 150 | The results are summarized in Table~\ref
150   \begin{center}
151   \caption{\label{tab:victorybad} Test of the data driven method in Monte Carlo
152   under different assumptions.  See text for details.}
153 < \begin{tabular}{|l|c|c|c|c|c|c|c|}
153 > \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
154   \hline
155 < & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & \met $>$ 50& obs/pred \\
156 < & included                 & included  & included & RECOSIM & and $\eta$ cuts &      &     \\ \hline
157 < 1&Y                        &     N     &   N      &  GEN    &   N             &   N  &       \\
158 < 2&Y                        &     N     &   N      &  GEN    &   Y             &   N  &   \\
159 < 3&Y                        &     N     &   N      &  GEN    &   Y             &   Y  &   \\
160 < 4&Y                        &     N     &   N      & RECOSIM &   Y             &   Y  &   \\
161 < 5&Y                        &     Y     &   N      & RECOSIM &   Y             &   Y  &   \\
162 < 6&Y                        &     Y     &   Y      & RECOSIM &   Y             &   Y  &   \\
155 > & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & Z veto & \met $>$ 50& obs/pred \\
156 > & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &  \\ \hline
157 > 1&Y                        &     N          &   N      &  GEN    &   N             &   N    & N          & 1.90  \\
158 > 2&Y                        &     N          &   N      &  GEN    &   Y             &   N    & N          & 1.64  \\
159 > 3&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & N          & 1.59  \\
160 > 4&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & Y          & 1.55  \\
161 > 5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
162 > 6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
163 > 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.46  \\
164 > %%%NOTE: updated value 1.18 -> 1.46 since 2/3 DY events have been removed by updated analysis selections,
165 > %%%dpt/pt cut and general lepton veto
166   \hline
167   \end{tabular}
168   \end{center}
# Line 153 | Line 174 | line of Table~\ref{tab:victorybad}, {\em
174   cuts.  We have verified that this effect is due to the polarization of
175   the $W$ (we remove the polarization by reweighting the events and we get
176   good agreement between prediction and observation).  The kinematical
177 < requirements (lines 2 and 3) do not have a significant additional effect.
178 < Going from GEN to RECOSIM there is a significant change in observed/predicted.  
179 < We have tracked this down to the fact that tcMET underestimates the true \met
180 < by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
181 < for each 1.5\% change in \met response.}.  Finally, contamination from non $t\bar{t}$
182 < events can have a significant impact on the BG prediction.  The changes between
183 < lines 5 and 6 of Table~\ref{tab:victorybad} is driven by only {\color{red} 3}
184 < Drell Yan events that pass the \met selection.
177 > requirements (lines 2,3,4) compensate somewhat for the effect of W polarization.
178 > Going from GEN to RECOSIM, the change in observed/predicted is small.  
179 > % We have tracked this down to the fact that tcMET underestimates the true \met
180 > % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
181 > %for each 1.5\% change in \met response.}.  
182 > Finally, contamination from non $t\bar{t}$
183 > events can have a significant impact on the BG prediction.  
184 > %The changes between
185 > %lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
186 > %Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
187 > %is statistically not well quantified).
188  
189   An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
190   not include effects of spin correlations between the two top quarks.  
191   We have studied this effect at the generator level using Alpgen.  We find
192 < that the bias is a the few percent level.
192 > that the bias is at the few percent level.
193 >
194 > %%%TO BE REPLACED
195 > %Based on the results of Table~\ref{tab:victorybad}, we conclude that the
196 > %naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
197 > %be corrected by a factor of {\color{red} $ K_{\rm{fudge}} =1.2 \pm 0.3$
198 > %(We still need to settle on thie exact value of this.
199 > %For the 11 pb analysis it is taken as =1.)} . The quoted
200 > %uncertainty is based on the stability of the Monte Carlo tests under
201 > %variations of event selections, choices of \met algorithm, etc.
202 > %For example, we find that observed/predicted changes by roughly 0.1
203 > %for each 1.5\% change in the average \met response.  
204  
205   Based on the results of Table~\ref{tab:victorybad}, we conclude that the
206 < naive data driven background estimate based on $P_T{\ell\ell)}$ needs to
207 < be corrected by a factor of {\color{red} $1.4 \pm 0.3$  (We need to
208 < decide what this number should be)}.  The quoted
209 < uncertainty is based on the stability of the Monte Carlo tests under
206 > naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
207 > be corrected by a factor of $ K_C = X \pm Y$.
208 > The value of this correction factor as well as the systematic uncertainty
209 > will be assessed using 38X ttbar madgraph MC. In the following we use
210 > $K_C = 1$ for simplicity. Based on previous MC studies we foresee a correction
211 > factor of $K_C \approx 1.2 - 1.5$, and we will assess an uncertainty
212 > based on the stability of the Monte Carlo tests under
213   variations of event selections, choices of \met algorithm, etc.
214 + For example, we find that observed/predicted changes by roughly 0.1
215 + for each 1.5\% change in the average \met response.
216 +
217  
218  
219   \subsection{Signal Contamination}
220   \label{sec:sigcont}
221  
222 < All data-driven methods are principle subject to signal contaminations
222 > All data-driven methods are in principle subject to signal contaminations
223   in the control regions, and the methods described in
224   Sections~\ref{sec:abcd} and~\ref{sec:victory} are not exceptions.
225   Signal contamination tends to dilute the significance of a signal
# Line 191 | Line 232 | adds redundancy because signal contamina
232   in the different control regions for the two methods.
233   For example, in the extreme case of a
234   new physics signal
235 < with $P_T(\ell \ell) = \met$, an excess of ev ents would be seen
235 > with $P_T(\ell \ell) = \met$, an excess of events would be seen
236   in the ABCD method but not in the $P_T(\ell \ell)$ method.
237  
238 +
239   The LM points are benchmarks for SUSY analyses at CMS.  The effects
240   of signal contaminations for a couple such points are summarized
241 < in Table~\ref{tab:sigcontABCD} and~\ref{tab:sigcontPT}.
200 < Signal contamination is definitely an important
241 > in Table~\ref{tab:sigcont}. Signal contamination is definitely an important
242   effect for these two LM points, but it does not totally hide the
243   presence of the signal.
244  
245  
246   \begin{table}[htb]
247   \begin{center}
248 < \caption{\label{tab:sigcontABCD} Effects of signal contamination
249 < for the background predictions of the ABCD method including LM0 or
250 < LM1.  Results
251 < are normalized to 30 pb$^{-1}$.}
252 < \begin{tabular}{|c||c|c||c|c|}
212 < \hline
213 < SM         & LM0         & BG Prediction & LM1          & BG Prediction \\
214 < Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
215 < x          & x           & x             & x            & x \\
248 > \caption{\label{tab:sigcont} Effects of signal contamination
249 > for the two data-driven background estimates. The three columns give
250 > the expected yield in the signal region and the background estimates
251 > using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.}
252 > \begin{tabular}{lccc}
253   \hline
254 < \end{tabular}
255 < \end{center}
256 < \end{table}
257 <
258 < \begin{table}[htb]
222 < \begin{center}
223 < \caption{\label{tab:sigcontPT} Effects of signal contamination
224 < for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
225 < LM1.  Results
226 < are normalized to 30 pb$^{-1}$.}
227 < \begin{tabular}{|c||c|c||c|c|}
228 < \hline
229 < SM         & LM0         & BG Prediction & LM1          & BG Prediction \\
230 < Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
231 < x          & x           & x             & x            & x \\
254 >            &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
255 > \hline
256 > SM only     &      1.41       &      1.19    &             0.96  \\
257 > SM + LM0    &      7.88       &      4.24    &             2.28  \\
258 > SM + LM1    &      3.98       &      1.53    &             1.44  \\
259   \hline
260   \end{tabular}
261   \end{center}
262   \end{table}
263  
264 +
265 +
266 + %\begin{table}[htb]
267 + %\begin{center}
268 + %\caption{\label{tab:sigcontABCD} Effects of signal contamination
269 + %for the background predictions of the ABCD method including LM0 or
270 + %LM1.  Results
271 + %are normalized to 30 pb$^{-1}$.}
272 + %\begin{tabular}{|c|c||c|c||c|c|}
273 + %\hline
274 + %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
275 + %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
276 + %1.2        & 1.0            & 6.8          & 3.7           & 3.4          & 1.3 \\
277 + %\hline
278 + %\end{tabular}
279 + %\end{center}
280 + %\end{table}
281 +
282 + %\begin{table}[htb]
283 + %\begin{center}
284 + %\caption{\label{tab:sigcontPT} Effects of signal contamination
285 + %for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
286 + %LM1.  Results
287 + %are normalized to 30 pb$^{-1}$.}
288 + %\begin{tabular}{|c|c||c|c||c|c|}
289 + %\hline
290 + %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
291 + %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
292 + %1.2        & 1.0            & 6.8          & 2.2           & 3.4          & 1.5 \\
293 + %\hline
294 + %\end{tabular}
295 + %\end{center}
296 + %\end{table}
297 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines