ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.10 by benhoob, Mon Nov 8 11:06:03 2010 UTC vs.
Revision 1.32 by benhoob, Thu Dec 2 17:48:33 2010 UTC

# Line 3 | Line 3
3   We have developed two data-driven methods to
4   estimate the background in the signal region.
5   The first one exploits the fact that
6 < \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
6 > SumJetPt and \met$/\sqrt{\rm SumJetPt}$ are nearly
7   uncorrelated for the $t\bar{t}$ background
8   (Section~\ref{sec:abcd});  the second one
9   is based on the fact that in $t\bar{t}$ the
# Line 12 | Line 12 | nearly the same as the $P_T$ of the pair
12   from $W$-decays, which is reconstructed as \met in the
13   detector.
14  
15 < In 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
16 < the signal region.  The expectations from the LMO
17 < and LM1 SUSY benchmark points are 5.6 and
18 < 2.2 events respectively.
15 >
16   %{\color{red} I took these
17   %numbers from the twiki, rescaling from 11.06 to 30/pb.
18   %They seem too large...are they really right?}
# Line 24 | Line 21 | and LM1 SUSY benchmark points are 5.6 an
21   \subsection{ABCD method}
22   \label{sec:abcd}
23  
24 < We find that in $t\bar{t}$ events \met and
25 < \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated.
26 < This is demonstrated in Figure~\ref{fig:uncor}.
24 > We find that in $t\bar{t}$ events SumJetPt and
25 > \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 > as demonstrated in Fig.~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
30 < \begin{figure}[tb]
30 > %\begin{figure}[bht]
31 > %\begin{center}
32 > %\includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
33 > %\caption{\label{fig:uncor}\protect Distributions of SumJetPt
34 > %in MC $t\bar{t}$ events for different intervals of
35 > %MET$/\sqrt{\rm SumJetPt}$.}
36 > %\end{center}
37 > %\end{figure}
38 >
39 > \begin{figure}[bht]
40   \begin{center}
41 < \includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
41 > \includegraphics[width=0.75\linewidth]{uncor.png}
42   \caption{\label{fig:uncor}\protect Distributions of SumJetPt
43   in MC $t\bar{t}$ events for different intervals of
44 < MET$/\sqrt{\rm SumJetPt}$.}
44 > MET$/\sqrt{\rm SumJetPt}$. h1, h2, and h3 refer to the MET$/\sqrt{\rm SumJetPt}$
45 > intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively.}
46   \end{center}
47   \end{figure}
48  
49 < \begin{figure}[bt]
49 > \begin{figure}[tb]
50   \begin{center}
51 < \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
52 < \caption{\label{fig:abcdMC}\protect Distributions of SumJetPt
53 < vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo.  Here we also
54 < show our choice of ABCD regions.}
51 > \includegraphics[width=0.75\linewidth]{ttdil_uncor_38X.png}
52 > \caption{\label{fig:abcdMC}\protect Distributions of MET$/\sqrt{\rm SumJetPt}$ vs.
53 > SumJetPt for SM Monte Carlo.  Here we also show our choice of ABCD regions. The correlation coefficient
54 > ${\rm corr_{XY}}$ is computed for events falling in the ABCD regions.}
55   \end{center}
56   \end{figure}
57  
58  
59   Our choice of ABCD regions is shown in Figure~\ref{fig:abcdMC}.
60   The signal region is region D.  The expected number of events
61 < in the four regions for the SM Monte Carlo, as well as the BG
62 < prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
63 < luminosity of 30 pb$^{-1}$.  The ABCD method is accurate
64 < to about 10\%.
61 > in the four regions for the SM Monte Carlo, as well as the background
62 > prediction A $\times$ C / B are given in Table~\ref{tab:abcdMC} for an integrated
63 > luminosity of 35 pb$^{-1}$.  The ABCD method with chosen boundaries is accurate
64 > to about 20\%, and we assess a corresponding systematic uncertainty
65 > {\bf \color{red} More detail needed here???}
66 >
67 > %As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties
68 > %by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty,
69 > %which we take as $\pm$5\% for SumJetPt and $\pm$2.5\% for MET/$\sqrt{\rm SumJetPt}$, since the
70 > %uncertainty on this quantity partially cancels due to the fact that it is a ratio of correlated
71 > %quantities. Based on these studies we assess a correction factor $k_{ABCD} = 1.2 \pm 0.2$ to the
72 > %predicted yield using the ABCD method.
73 >
74 >
75   %{\color{red} Avi wants some statement about stability
76   %wrt changes in regions.  I am not sure that we have done it and
77   %I am not sure it is necessary (Claudio).}
78  
79 < \begin{table}[htb]
79 > \begin{table}[ht]
80   \begin{center}
81   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
82 < 30 pb$^{-1}$ in the ABCD regions.}
83 < \begin{tabular}{|l|c|c|c|c||c|}
82 > 35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
83 > the signal region given by A $\times$ C / B. Here `SM other' is the sum
84 > of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
85 > $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
86 > \begin{tabular}{lccccc}
87 > \hline
88 >              sample   &                   A   &                   B   &                   C   &                   D   &                      A $\times$ C / B  \\
89 > \hline
90 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &   8.27  $\pm$  0.18   &  32.16  $\pm$  0.35   &   4.69  $\pm$  0.13   &   1.05  $\pm$  0.06   &   1.21  $\pm$  0.04  \\
91 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &   0.22  $\pm$  0.11   &   1.54  $\pm$  0.29   &   0.05  $\pm$  0.05   &   0.16  $\pm$  0.09   &   0.01  $\pm$  0.01  \\
92 >            SM other                     &   0.54  $\pm$  0.03   &   2.28  $\pm$  0.12   &   0.23  $\pm$  0.03   &   0.07  $\pm$  0.01   &   0.05  $\pm$  0.01  \\
93 > \hline
94 >         total SM MC                     &   9.03  $\pm$  0.21   &  35.97  $\pm$  0.46   &   4.97  $\pm$  0.15   &   1.29  $\pm$  0.11   &   1.25  $\pm$  0.05  \\
95 > \hline
96 > \end{tabular}
97 > \end{center}
98 > \end{table}
99 >
100 >
101 >
102 > \begin{table}[ht]
103 > \begin{center}
104 > \caption{\label{tab:abcdsyst}
105 > {\bf \color{red} Do we need this study at all? Observed/predicted is consistent within stat uncertainties as the boundaries are varied- is it enough to simply state this fact in the text??? }
106 > Results of the systematic study of the ABCD method by varying the boundaries
107 > between the ABCD regions shown in Fig.~\ref{fig:abcdMC}. Here $x_1$ is the lower SumJetPt boundary and
108 > $x_2$ is the boundary separating regions A and B from C and D, their nominal values are 125 and 300~GeV,
109 > respectively. $y_1$ is the lower MET/$\sqrt{\rm SumJetPt}$ boundary and
110 > $y_2$ is the boundary separating regions B and C from A and D, their nominal values are 4.5 and 8.5~GeV$^{1/2}$,
111 > respectively.}
112 > \begin{tabular}{cccc|c}
113 > \hline
114 > $x_1$   &   $x_2$ & $y_1$   &   $y_2$ & Observed/Predicted \\
115 > \hline
116 > nominal & nominal & nominal & nominal & $1.20 \pm 0.12$    \\
117 > +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.38 \pm 0.15$    \\
118 > +5\%    & +5\%    & nominal & nominal & $1.31 \pm 0.14$    \\
119 > nominal & nominal & +2.5\%  & +2.5\%  & $1.25 \pm 0.13$    \\
120 > nominal & +5\%    & nominal & +2.5\%  & $1.32 \pm 0.14$    \\
121 > nominal & -5\%    & nominal & -2.5\%  & $1.16 \pm 0.09$    \\
122 > -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.21 \pm 0.11$    \\
123 > +5\%    & +5\%    & -2.5\%  & -2.5\%  & $1.26 \pm 0.12$    \\
124   \hline
68 Sample   & A   & B    & C   & D   & AC/D \\ \hline
69 ttdil    & 6.9 & 28.6 & 4.2 & 1.0 & 1.0  \\
70 Zjets    & 0.0 & 1.3  & 0.1 & 0.1 & 0.0  \\
71 Other SM & 0.5 & 2.0  & 0.1 & 0.1 & 0.0  \\ \hline
72 total MC & 7.4 & 31.9 & 4.4 & 1.2 & 1.0 \\ \hline
125   \end{tabular}
126   \end{center}
127   \end{table}
# Line 90 | Line 142 | In practice one has to rescale the resul
142   to account for the fact that any dilepton selection must include a
143   moderate \met cut in order to reduce Drell Yan backgrounds.  This
144   is discussed in Section 5.3 of Reference~\cite{ref:ourvictory}; for a \met
145 < cut of 50 GeV, the rescaling factor is obtained from the data as
145 > cut of 50 GeV, the rescaling factor is obtained from the MC as
146  
147   \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
148   \begin{center}
149 < $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~}$
149 > $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~} = 1.52$
150   \end{center}
151  
152  
101 Monte Carlo studies give values of $K$ that are typically between 1.5 and 1.6,
102 depending on selection details.  
153   %%%TO BE REPLACED
154   %Given the integrated luminosity of the
155   %present dataset, the determination of $K$ in data is severely statistics
# Line 115 | Line 165 | There are several effects that spoil the
165   $P_T(\ell\ell)$:
166   \begin{itemize}
167   \item $Ws$ in top events are polarized.  Neutrinos are emitted preferentially
168 < forward in the $W$ rest frame, thus the $P_T(\nu\nu)$ distribution is harder
168 > parallel to the $W$ velocity while charged leptons are emitted prefertially
169 > anti-parallel. Thus the $P_T(\nu\nu)$ distribution is harder
170   than the $P_T(\ell\ell)$ distribution for top dilepton events.
171   \item The lepton selections results in $P_T$ and $\eta$ cuts on the individual
172   leptons that have no simple correspondance to the neutrino requirements.
173   \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
174   neutrinos which is only partially compensated by the $K$ factor above.
175   \item The \met resolution is much worse than the dilepton $P_T$ resolution.
176 < When convoluted with a falling spectrum in the tails of \met, this result
176 > When convoluted with a falling spectrum in the tails of \met, this results
177   in a harder spectrum for \met than the original $P_T(\nu\nu)$.
178   \item The \met response in CMS is not exactly 1.  This causes a distortion
179   in the \met distribution that is not present in the $P_T(\ell\ell)$ distribution.
# Line 133 | Line 184 | of $P_T(\ell\ell)$ and $P_T(\nu\nu)$ do
184   sources.  These events can affect the background prediction.  Particularly
185   dangerous are high $P_T$ Drell Yan events that barely pass the \met$>$ 50
186   GeV selection.  They will tend to push the data-driven background prediction up.
187 + Therefore we estimate the number of DY events entering the background prediction
188 + using the $R_{out/in}$ method as described in Sec.~\ref{sec:othBG}.
189   \end{itemize}
190  
191   We have studied these effects in SM Monte Carlo, using a mixture of generator and
# Line 143 | Line 196 | The results are summarized in Table~\ref
196  
197   \begin{table}[htb]
198   \begin{center}
199 < \caption{\label{tab:victorybad} Test of the data driven method in Monte Carlo
199 > \caption{\label{tab:victorybad}
200 > {\bf \color{red} Should we either update this with 38X MC  or remove it?? }
201 > Test of the data driven method in Monte Carlo
202   under different assumptions.  See text for details.}
203   \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
204   \hline
205   & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & Z veto & \met $>$ 50& obs/pred \\
206 < & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &  \\ \hline
206 > & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &       \\ \hline
207   1&Y                        &     N          &   N      &  GEN    &   N             &   N    & N          & 1.90  \\
208   2&Y                        &     N          &   N      &  GEN    &   Y             &   N    & N          & 1.64  \\
209   3&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & N          & 1.59  \\
210   4&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & Y          & 1.55  \\
211   5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
212   6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
213 < 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.18  \\
213 > 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.38  \\
214   \hline
215   \end{tabular}
216   \end{center}
217   \end{table}
218  
219  
220 + \begin{table}[htb]
221 + \begin{center}
222 + \caption{\label{tab:victorysyst}
223 + Summary of uncertainties in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton.
224 + In the first table, `up' and `down' refer to shifting the hadronic energy scale up and down by 5\%. In the second table, the quoted value
225 + refers to the amount of additional smearing of the MET, as discussed in the text. In the third table, the normalization of all backgrounds
226 + other than $t\bar{t} \to$~dilepton is varied.
227 + {\bf \color{red} Should I remove `observed' and `predicted' and show only the ratio? }}
228 +
229 + \begin{tabular}{ lcccc }
230 + \hline
231 +       MET scale  &      Predicted       &       Observed       &       Obs/pred       \\
232 + \hline
233 +        nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
234 +            up    &  0.92 $ \pm $ 0.11   &  1.53 $ \pm $ 0.12   &  1.66 $ \pm $ 0.23   \\
235 +          down    &  0.81 $ \pm $ 0.07   &  1.08 $ \pm $ 0.11   &  1.32 $ \pm $ 0.17   \\
236 + \hline
237 +   MET smearing   &      Predicted       &       Observed        &       Obs/pred      \\
238 + \hline
239 +        nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
240 +           10\%   &  0.90 $ \pm $ 0.11   &  1.30 $ \pm $ 0.11   &  1.44 $ \pm $ 0.21   \\
241 +           20\%   &  0.84 $ \pm $ 0.07   &  1.36 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
242 +           30\%   &  1.05 $ \pm $ 0.18   &  1.32 $ \pm $ 0.11   &  1.27 $ \pm $ 0.24   \\
243 +           40\%   &  0.85 $ \pm $ 0.07   &  1.37 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
244 +           50\%   &  1.08 $ \pm $ 0.18   &  1.36 $ \pm $ 0.11   &  1.26 $ \pm $ 0.24   \\
245 + \hline
246 +  non-$t\bar{t} \to$~dilepton scale factor   &          Predicted   &           Observed   &           Obs/pred   \\
247 + \hline
248 +   ttdil only                                &  0.77 $ \pm $ 0.07   &  1.05 $ \pm $ 0.06   &  1.36 $ \pm $ 0.14   \\
249 +   nominal                                   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
250 +   double non-ttdil yield                    &  1.06 $ \pm $ 0.18   &  1.52 $ \pm $ 0.20   &  1.43 $ \pm $ 0.30   \\
251 + \hline
252 + \end{tabular}
253 + \end{center}
254 + \end{table}
255 +
256 +
257 +
258   The largest discrepancy between prediction and observation occurs on the first
259   line of Table~\ref{tab:victorybad}, {\em i.e.}, at the generator level with no
260   cuts.  We have verified that this effect is due to the polarization of
# Line 173 | Line 266 | Going from GEN to RECOSIM, the change in
266   % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
267   %for each 1.5\% change in \met response.}.  
268   Finally, contamination from non $t\bar{t}$
269 < events can have a significant impact on the BG prediction.  The changes between
270 < lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
271 < Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
272 < is statistically not well quantified).
269 > events can have a significant impact on the BG prediction.  
270 > %The changes between
271 > %lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
272 > %Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
273 > %is statistically not well quantified).
274  
275   An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
276   not include effects of spin correlations between the two top quarks.  
277   We have studied this effect at the generator level using Alpgen.  We find
278   that the bias is at the few percent level.
279  
280 < %%%TO BE REPLACED
281 < %Based on the results of Table~\ref{tab:victorybad}, we conclude that the
282 < %naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
283 < %be corrected by a factor of {\color{red} $ K_{\rm{fudge}} =1.2 \pm 0.3$
284 < %(We still need to settle on thie exact value of this.
285 < %For the 11 pb analysis it is taken as =1.)} . The quoted
286 < %uncertainty is based on the stability of the Monte Carlo tests under
287 < %variations of event selections, choices of \met algorithm, etc.
288 < %For example, we find that observed/predicted changes by roughly 0.1
289 < %for each 1.5\% change in the average \met response.  
290 <
291 < Based on the results of Table~\ref{tab:victorybad}, we conclude that the
292 < naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
293 < be corrected by a factor of $ K = X \pm Y$.
294 < The value of this correction factor as well as the systematic uncertainty
295 < will be assessed using 38X ttbar madgraph MC. In the following we use
296 < $K = 1$ for simplicity. Based on previous MC studies we foresee a correction
203 < factor of $\approx 1.2 - 1.4$, and we will assess an uncertainty
204 < based on the stability of the Monte Carlo tests under
205 < variations of event selections, choices of \met algorithm, etc.
206 < For example, we find that observed/predicted changes by roughly 0.1
207 < for each 1.5\% change in the average \met response.
208 <
280 > Based on the results of Table~\ref{tab:victorysyst}, we conclude that the
281 > naive data-driven background estimate based on $P_T{(\ell\ell)}$ needs to
282 > be corrected by a factor of $ K_C = 1.4 \pm 0.2({\rm stat})$.
283 >
284 > The dominant sources of systematic uncertainty in $K_C$ are due to non-$t\bar{t} \to$~dilepton backgrounds,
285 > and the MET scale and resolution uncertainties, as summarized in Table~\ref{tab:victorysyst}.
286 > The impact of non-$t\bar{t}$-dilepton background is assessed
287 > by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton.
288 > The uncertainty is assessed as the larger of the differences between the nominal $K_C$ value and the values
289 > obtained using only $t\bar{t} \to$~dilepton MC and obtained by doubling the non $t\bar{t} \to$~dilepton component,
290 > giving an uncertainty of $0.04$.
291 >
292 > The uncertainty in $K_C$ due to the MET scale uncertainty is assessed by varying the hadronic energy scale using
293 > the same method as in~\cite{ref:top}, giving an uncertainty of 0.3. We also assess the impact of the MET resolution
294 > uncertainty on $K_C$ by applying a random smearing to the MET. For each event, we determine the expected MET resolution
295 > based on the sumJetPt, and smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%.
296 > The results show that $K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty.
297  
298 + Incorporating all the statistical and systematic uncertainties we find $K_C = 1.4 \pm 0.4$.
299  
300   \subsection{Signal Contamination}
301   \label{sec:sigcont}
# Line 230 | Line 319 | in the ABCD method but not in the $P_T(\
319  
320   The LM points are benchmarks for SUSY analyses at CMS.  The effects
321   of signal contaminations for a couple such points are summarized
322 < in Table~\ref{tab:sigcontABCD} and~\ref{tab:sigcontPT}.
234 < Signal contamination is definitely an important
322 > in Table~\ref{tab:sigcont}. Signal contamination is definitely an important
323   effect for these two LM points, but it does not totally hide the
324   presence of the signal.
325  
326  
327   \begin{table}[htb]
328   \begin{center}
329 < \caption{\label{tab:sigcontABCD} Effects of signal contamination
330 < for the background predictions of the ABCD method including LM0 or
331 < LM1.  Results
332 < are normalized to 30 pb$^{-1}$.}
333 < \begin{tabular}{|c|c||c|c||c|c|}
246 < \hline
247 < SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
248 < Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
249 < 1.2        & 1.0            & 6.8          & 3.7           & 3.4          & 1.3 \\
329 > \caption{\label{tab:sigcont} Effects of signal contamination
330 > for the two data-driven background estimates. The three columns give
331 > the expected yield in the signal region and the background estimates
332 > using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.}
333 > \begin{tabular}{lccc}
334   \hline
335 < \end{tabular}
336 < \end{center}
337 < \end{table}
338 <
339 < \begin{table}[htb]
256 < \begin{center}
257 < \caption{\label{tab:sigcontPT} Effects of signal contamination
258 < for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
259 < LM1.  Results
260 < are normalized to 30 pb$^{-1}$.}
261 < \begin{tabular}{|c|c||c|c||c|c|}
262 < \hline
263 < SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
264 < Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
265 < 1.2        & 1.0            & 6.8          & 2.2           & 3.4          & 1.5 \\
335 >            &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
336 > \hline
337 > SM only     &       1.29      &      1.25    &           0.92    \\
338 > SM + LM0    &       7.57      &      4.44    &           1.96    \\
339 > SM + LM1    &       3.85      &      1.60    &           1.43    \\
340   \hline
341   \end{tabular}
342   \end{center}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines