ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.3 by claudioc, Fri Oct 29 04:13:41 2010 UTC vs.
Revision 1.33 by benhoob, Fri Dec 3 14:15:04 2010 UTC

# Line 2 | Line 2
2   \label{sec:datadriven}
3   We have developed two data-driven methods to
4   estimate the background in the signal region.
5 < The first one explouts the fact that
6 < \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
5 > The first one exploits the fact that
6 > SumJetPt and \met$/\sqrt{\rm SumJetPt}$ are nearly
7   uncorrelated for the $t\bar{t}$ background
8   (Section~\ref{sec:abcd});  the second one
9   is based on the fact that in $t\bar{t}$ the
# Line 12 | Line 12 | nearly the same as the $P_T$ of the pair
12   from $W$-decays, which is reconstructed as \met in the
13   detector.
14  
15 < In 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
16 < the signal region.  The expectations from the LMO
17 < and LM1 SUSY benchmark points are 15.1 and
18 < 6.0 events respectively. {\color{red} I took these
19 < numbers from the twiki, rescaling from 11.06 to 30/pb.
20 < They seem too large...are they really right?}
15 >
16 > %{\color{red} I took these
17 > %numbers from the twiki, rescaling from 11.06 to 30/pb.
18 > %They seem too large...are they really right?}
19  
20  
21   \subsection{ABCD method}
22   \label{sec:abcd}
23  
24 < We find that in $t\bar{t}$ events \met and
25 < \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated.
26 < This is demonstrated in Figure~\ref{fig:uncor}.
24 > We find that in $t\bar{t}$ events SumJetPt and
25 > \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 > as demonstrated in Fig.~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
30 < \begin{figure}[tb]
30 > %\begin{figure}[bht]
31 > %\begin{center}
32 > %\includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
33 > %\caption{\label{fig:uncor}\protect Distributions of SumJetPt
34 > %in MC $t\bar{t}$ events for different intervals of
35 > %MET$/\sqrt{\rm SumJetPt}$.}
36 > %\end{center}
37 > %\end{figure}
38 >
39 > \begin{figure}[bht]
40   \begin{center}
41 < \includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
41 > \includegraphics[width=0.75\linewidth]{uncor.png}
42   \caption{\label{fig:uncor}\protect Distributions of SumJetPt
43   in MC $t\bar{t}$ events for different intervals of
44 < MET$/\sqrt{\rm SumJetPt}$.}
44 > MET$/\sqrt{\rm SumJetPt}$. h1, h2, and h3 refer to the MET$/\sqrt{\rm SumJetPt}$
45 > intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively.}
46   \end{center}
47   \end{figure}
48  
49 < \begin{figure}[bt]
49 > \begin{figure}[tb]
50   \begin{center}
51 < \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
52 < \caption{\label{fig:abcdMC}\protect Distributions of SumJetPt
53 < vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo.  Here we also
54 < show our choice of ABCD regions. {\color{red} Derek, I
47 < do not know if this is SM or $t\bar{t}$ only.}}
51 > \includegraphics[width=0.75\linewidth]{ttdil_uncor_38X.png}
52 > \caption{\label{fig:abcdMC}\protect Distributions of MET$/\sqrt{\rm SumJetPt}$ vs.
53 > SumJetPt for SM Monte Carlo.  Here we also show our choice of ABCD regions. The correlation coefficient
54 > ${\rm corr_{XY}}$ is computed for events falling in the ABCD regions.}
55   \end{center}
56   \end{figure}
57  
58  
59   Our choice of ABCD regions is shown in Figure~\ref{fig:abcdMC}.
60   The signal region is region D.  The expected number of events
61 < in the four regions for the SM Monte Carlo, as well as the BG
62 < prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
63 < luminosity of 30 pb$^{-1}$.  The ABCD method is accurate
64 < to about 10\%.
61 > in the four regions for the SM Monte Carlo, as well as the background
62 > prediction A $\times$ C / B are given in Table~\ref{tab:abcdMC} for an integrated
63 > luminosity of 35 pb$^{-1}$. In Table~\ref{tab:abcdsyst}, we test the stability of
64 > observed/predicted with respect to variations in the ABCD boundaries.
65 > Based on the results in Tables~\ref{tab:abcdMC} and~\ref{tab:abcdsyst}, we assess
66 > a systematic uncertainty of 20\% on the prediction of the ABCD method.
67 >
68 > %As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties
69 > %by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty,
70 > %which we take as $\pm$5\% for SumJetPt and $\pm$2.5\% for MET/$\sqrt{\rm SumJetPt}$, since the
71 > %uncertainty on this quantity partially cancels due to the fact that it is a ratio of correlated
72 > %quantities. Based on these studies we assess a correction factor $k_{ABCD} = 1.2 \pm 0.2$ to the
73 > %predicted yield using the ABCD method.
74 >
75 >
76 > %{\color{red} Avi wants some statement about stability
77 > %wrt changes in regions.  I am not sure that we have done it and
78 > %I am not sure it is necessary (Claudio).}
79  
80 < \begin{table}[htb]
80 > \begin{table}[ht]
81   \begin{center}
82   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
83 < 30 pb$^{-1}$ in the ABCD regions.}
84 < \begin{tabular}{|l|c|c|c|c||c|}
83 > 35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
84 > the signal region given by A $\times$ C / B. Here `SM other' is the sum
85 > of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
86 > $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
87 > \begin{tabular}{lccccc}
88 > \hline
89 >              sample   &                   A   &                   B   &                   C   &                   D   &                      A $\times$ C / B  \\
90 > \hline
91 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &   8.27  $\pm$  0.18   &  32.16  $\pm$  0.35   &   4.69  $\pm$  0.13   &   1.05  $\pm$  0.06   &   1.21  $\pm$  0.04  \\
92 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &   0.22  $\pm$  0.11   &   1.54  $\pm$  0.29   &   0.05  $\pm$  0.05   &   0.16  $\pm$  0.09   &   0.01  $\pm$  0.01  \\
93 >            SM other                     &   0.54  $\pm$  0.03   &   2.28  $\pm$  0.12   &   0.23  $\pm$  0.03   &   0.07  $\pm$  0.01   &   0.05  $\pm$  0.01  \\
94 > \hline
95 >         total SM MC                     &   9.03  $\pm$  0.21   &  35.97  $\pm$  0.46   &   4.97  $\pm$  0.15   &   1.29  $\pm$  0.11   &   1.25  $\pm$  0.05  \\
96 > \hline
97 > \end{tabular}
98 > \end{center}
99 > \end{table}
100 >
101 >
102 >
103 > \begin{table}[ht]
104 > \begin{center}
105 > \caption{\label{tab:abcdsyst}
106 > {\bf \color{red} Do we need this study at all? Observed/predicted is consistent within stat uncertainties as the boundaries are varied- is it enough to simply state this fact in the text??? }
107 > Results of the systematic study of the ABCD method by varying the boundaries
108 > between the ABCD regions shown in Fig.~\ref{fig:abcdMC}. Here $x_1$ is the lower SumJetPt boundary and
109 > $x_2$ is the boundary separating regions A and B from C and D, their nominal values are 125 and 300~GeV,
110 > respectively. $y_1$ is the lower MET/$\sqrt{\rm SumJetPt}$ boundary and
111 > $y_2$ is the boundary separating regions B and C from A and D, their nominal values are 4.5 and 8.5~GeV$^{1/2}$,
112 > respectively.}
113 > \begin{tabular}{cccc|c}
114 > \hline
115 > $x_1$   &   $x_2$ & $y_1$   &   $y_2$ & Observed/Predicted \\
116 > \hline
117 > nominal & nominal & nominal & nominal & $1.03 \pm 0.10$    \\
118 > +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.13 \pm 0.13$    \\
119 > +5\%    & +5\%    & nominal & nominal & $1.08 \pm 0.12$    \\
120 > nominal & nominal & +2.5\%  & +2.5\%  & $1.07 \pm 0.11$    \\
121 > nominal & +5\%    & nominal & +2.5\%  & $1.09 \pm 0.12$    \\
122 > nominal & -5\%    & nominal & -2.5\%  & $0.98 \pm 0.08$    \\
123 > -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.03 \pm 0.09$    \\
124 > +5\%    & +5\%    & -2.5\%  & -2.5\%  & $1.03 \pm 0.11$    \\
125   \hline
65 Sample   & A   & B    & C   & D   & AC/D \\ \hline
66 ttdil    & 6.9 & 28.6 & 4.2 & 1.0 & 1.0  \\
67 Zjets    & 0.0 & 1.3  & 0.1 & 0.1 & 0.0  \\
68 Other SM & 0.5 & 2.0  & 0.1 & 0.1 & 0.0  \\ \hline
69 total MC & 7.4 & 31.9 & 4.4 & 1.2 & 1.0 \\ \hline
126   \end{tabular}
127   \end{center}
128   \end{table}
# Line 87 | Line 143 | In practice one has to rescale the resul
143   to account for the fact that any dilepton selection must include a
144   moderate \met cut in order to reduce Drell Yan backgrounds.  This
145   is discussed in Section 5.3 of Reference~\cite{ref:ourvictory}; for a \met
146 < cut of 50 GeV, the rescaling factor is obtained from the data as
146 > cut of 50 GeV, the rescaling factor is obtained from the MC as
147  
148   \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
149   \begin{center}
150 < $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~}$
150 > $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~} = 1.52$
151   \end{center}
152  
153  
154 < Monte Carlo studies give values of $K$ that are typically between 1.5 and 1.6,
155 < depending on selection details.
154 > %%%TO BE REPLACED
155 > %Given the integrated luminosity of the
156 > %present dataset, the determination of $K$ in data is severely statistics
157 > %limited.  Thus, we take $K$ from $t\bar{t}$ Monte Carlo as
158 >
159 > %\begin{center}
160 > %$ K_{MC} = \frac{\int_0^{\infty} {\cal N}(\met)~~d\met~}{\int_{50}^{\infty} {\cal N}(\met)~~d\met~}$
161 > %\end{center}
162 >
163 > %\noindent {\color{red} For the 11 pb result we have used $K$ from data.}
164  
165   There are several effects that spoil the correspondance between \met and
166   $P_T(\ell\ell)$:
167   \begin{itemize}
168   \item $Ws$ in top events are polarized.  Neutrinos are emitted preferentially
169 < forward in the $W$ rest frame, thus the $P_T(\nu\nu)$ distribution is harder
169 > parallel to the $W$ velocity while charged leptons are emitted prefertially
170 > anti-parallel. Thus the $P_T(\nu\nu)$ distribution is harder
171   than the $P_T(\ell\ell)$ distribution for top dilepton events.
172   \item The lepton selections results in $P_T$ and $\eta$ cuts on the individual
173   leptons that have no simple correspondance to the neutrino requirements.
174   \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
175   neutrinos which is only partially compensated by the $K$ factor above.
176   \item The \met resolution is much worse than the dilepton $P_T$ resolution.
177 < When convoluted with a falling spectrum in the tails of \met, this result
177 > When convoluted with a falling spectrum in the tails of \met, this results
178   in a harder spectrum for \met than the original $P_T(\nu\nu)$.
179   \item The \met response in CMS is not exactly 1.  This causes a distortion
180   in the \met distribution that is not present in the $P_T(\ell\ell)$ distribution.
# Line 120 | Line 185 | of $P_T(\ell\ell)$ and $P_T(\nu\nu)$ do
185   sources.  These events can affect the background prediction.  Particularly
186   dangerous are high $P_T$ Drell Yan events that barely pass the \met$>$ 50
187   GeV selection.  They will tend to push the data-driven background prediction up.
188 + Therefore we estimate the number of DY events entering the background prediction
189 + using the $R_{out/in}$ method as described in Sec.~\ref{sec:othBG}.
190   \end{itemize}
191  
192   We have studied these effects in SM Monte Carlo, using a mixture of generator and
# Line 130 | Line 197 | The results are summarized in Table~\ref
197  
198   \begin{table}[htb]
199   \begin{center}
200 < \caption{\label{tab:victorybad} Test of the data driven method in Monte Carlo
200 > \caption{\label{tab:victorybad}
201 > {\bf \color{red} Should we either update this with 38X MC  or remove it?? }
202 > Test of the data driven method in Monte Carlo
203   under different assumptions.  See text for details.}
204 < \begin{tabular}{|l|c|c|c|c|c|c|c|}
204 > \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
205   \hline
206 < & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & \met $>$ 50& obs/pred \\
207 < & included                 & included  & included & RECOSIM & and $\eta$ cuts &      &     \\ \hline
208 < 1&Y                        &     N     &   N      &  GEN    &   N             &   N  &       \\
209 < 2&Y                        &     N     &   N      &  GEN    &   Y             &   N  &   \\
210 < 3&Y                        &     N     &   N      &  GEN    &   Y             &   Y  &   \\
211 < 4&Y                        &     N     &   N      & RECOSIM &   Y             &   Y  &   \\
212 < 5&Y                        &     Y     &   N      & RECOSIM &   Y             &   Y  &   \\
213 < 6&Y                        &     Y     &   Y      & RECOSIM &   Y             &   Y  &   \\
206 > & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & Z veto & \met $>$ 50& obs/pred \\
207 > & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &       \\ \hline
208 > 1&Y                        &     N          &   N      &  GEN    &   N             &   N    & N          & 1.90  \\
209 > 2&Y                        &     N          &   N      &  GEN    &   Y             &   N    & N          & 1.64  \\
210 > 3&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & N          & 1.59  \\
211 > 4&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & Y          & 1.55  \\
212 > 5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
213 > 6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
214 > 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.38  \\
215   \hline
216   \end{tabular}
217   \end{center}
218   \end{table}
219  
220  
221 + \begin{table}[htb]
222 + \begin{center}
223 + \caption{\label{tab:victorysyst}
224 + Summary of uncertainties in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton.
225 + In the first table, `up' and `down' refer to shifting the hadronic energy scale up and down by 5\%. In the second table, the quoted value
226 + refers to the amount of additional smearing of the MET, as discussed in the text. In the third table, the normalization of all backgrounds
227 + other than $t\bar{t} \to$~dilepton is varied.
228 + {\bf \color{red} Should I remove `observed' and `predicted' and show only the ratio? }}
229 +
230 + \begin{tabular}{ lcccc }
231 + \hline
232 +       MET scale  &      Predicted       &       Observed       &       Obs/pred       \\
233 + \hline
234 +        nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
235 +            up    &  0.92 $ \pm $ 0.11   &  1.53 $ \pm $ 0.12   &  1.66 $ \pm $ 0.23   \\
236 +          down    &  0.81 $ \pm $ 0.07   &  1.08 $ \pm $ 0.11   &  1.32 $ \pm $ 0.17   \\
237 + \hline
238 +   MET smearing   &      Predicted       &       Observed        &       Obs/pred      \\
239 + \hline
240 +        nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
241 +           10\%   &  0.90 $ \pm $ 0.11   &  1.30 $ \pm $ 0.11   &  1.44 $ \pm $ 0.21   \\
242 +           20\%   &  0.84 $ \pm $ 0.07   &  1.36 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
243 +           30\%   &  1.05 $ \pm $ 0.18   &  1.32 $ \pm $ 0.11   &  1.27 $ \pm $ 0.24   \\
244 +           40\%   &  0.85 $ \pm $ 0.07   &  1.37 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
245 +           50\%   &  1.08 $ \pm $ 0.18   &  1.36 $ \pm $ 0.11   &  1.26 $ \pm $ 0.24   \\
246 + \hline
247 +  non-$t\bar{t} \to$~dilepton scale factor   &          Predicted   &           Observed   &           Obs/pred   \\
248 + \hline
249 +   ttdil only                                &  0.77 $ \pm $ 0.07   &  1.05 $ \pm $ 0.06   &  1.36 $ \pm $ 0.14   \\
250 +   nominal                                   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
251 +   double non-ttdil yield                    &  1.06 $ \pm $ 0.18   &  1.52 $ \pm $ 0.20   &  1.43 $ \pm $ 0.30   \\
252 + \hline
253 + \end{tabular}
254 + \end{center}
255 + \end{table}
256 +
257 +
258 +
259   The largest discrepancy between prediction and observation occurs on the first
260   line of Table~\ref{tab:victorybad}, {\em i.e.}, at the generator level with no
261   cuts.  We have verified that this effect is due to the polarization of
262   the $W$ (we remove the polarization by reweighting the events and we get
263   good agreement between prediction and observation).  The kinematical
264 < requirements (lines 2 and 3) do not have a significant additional effect.
265 < Going from GEN to RECOSIM there is a significant change in observed/predicted.  
266 < We have tracked this down to the fact that tcMET underestimates the true \met
267 < by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
268 < for each 1.5\% change in \met response.}.  Finally, contamination from non $t\bar{t}$
269 < events can have a significant impact on the BG prediction.  The changes between
270 < lines 5 and 6 of Table~\ref{tab:victorybad} is driven by only {\color{red} 3}
271 < Drell Yan events that pass the \met selection.
264 > requirements (lines 2,3,4) compensate somewhat for the effect of W polarization.
265 > Going from GEN to RECOSIM, the change in observed/predicted is small.  
266 > % We have tracked this down to the fact that tcMET underestimates the true \met
267 > % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
268 > %for each 1.5\% change in \met response.}.  
269 > Finally, contamination from non $t\bar{t}$
270 > events can have a significant impact on the BG prediction.  
271 > %The changes between
272 > %lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
273 > %Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
274 > %is statistically not well quantified).
275  
276   An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
277   not include effects of spin correlations between the two top quarks.  
278   We have studied this effect at the generator level using Alpgen.  We find
279 < that the bias is a the few percent level.
279 > that the bias is at the few percent level.
280  
281 < Based on the results of Table~\ref{tab:victorybad}, we conclude that the
282 < naive data driven background estimate based on $P_T{\ell\ell)}$ needs to
283 < be corrected by a factor of {\color{red} $1.4 \pm 0.3$  (We need to
284 < decide what this number should be)}.  The quoted
285 < uncertainty is based on the stability of the Monte Carlo tests under
286 < variations of event selections, choices of \met algorithm, etc.
281 > Based on the results of Table~\ref{tab:victorysyst}, we conclude that the
282 > naive data-driven background estimate based on $P_T{(\ell\ell)}$ needs to
283 > be corrected by a factor of $ K_C = 1.4 \pm 0.2({\rm stat})$.
284 >
285 > The dominant sources of systematic uncertainty in $K_C$ are due to non-$t\bar{t} \to$~dilepton backgrounds,
286 > and the MET scale and resolution uncertainties, as summarized in Table~\ref{tab:victorysyst}.
287 > The impact of non-$t\bar{t}$-dilepton background is assessed
288 > by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton.
289 > The uncertainty is assessed as the larger of the differences between the nominal $K_C$ value and the values
290 > obtained using only $t\bar{t} \to$~dilepton MC and obtained by doubling the non $t\bar{t} \to$~dilepton component,
291 > giving an uncertainty of $0.04$.
292 >
293 > The uncertainty in $K_C$ due to the MET scale uncertainty is assessed by varying the hadronic energy scale using
294 > the same method as in~\cite{ref:top}, giving an uncertainty of 0.3. We also assess the impact of the MET resolution
295 > uncertainty on $K_C$ by applying a random smearing to the MET. For each event, we determine the expected MET resolution
296 > based on the sumJetPt, and smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%.
297 > The results show that $K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty.
298  
299 + Incorporating all the statistical and systematic uncertainties we find $K_C = 1.4 \pm 0.4$.
300  
301   \subsection{Signal Contamination}
302   \label{sec:sigcont}
303  
304 < All data-driven methods are principle subject to signal contaminations
304 > All data-driven methods are in principle subject to signal contaminations
305   in the control regions, and the methods described in
306   Sections~\ref{sec:abcd} and~\ref{sec:victory} are not exceptions.
307   Signal contamination tends to dilute the significance of a signal
# Line 191 | Line 314 | adds redundancy because signal contamina
314   in the different control regions for the two methods.
315   For example, in the extreme case of a
316   new physics signal
317 < with $P_T(\ell \ell) = \met$, an excess of ev ents would be seen
317 > with $P_T(\ell \ell) = \met$, an excess of events would be seen
318   in the ABCD method but not in the $P_T(\ell \ell)$ method.
319  
320 +
321   The LM points are benchmarks for SUSY analyses at CMS.  The effects
322   of signal contaminations for a couple such points are summarized
323 < in Table~\ref{tab:sigcontABCD} and~\ref{tab:sigcontPT}.
200 < Signal contamination is definitely an important
323 > in Table~\ref{tab:sigcont}. Signal contamination is definitely an important
324   effect for these two LM points, but it does not totally hide the
325   presence of the signal.
326  
327  
328   \begin{table}[htb]
329   \begin{center}
330 < \caption{\label{tab:sigcontABCD} Effects of signal contamination
331 < for the background predictions of the ABCD method including LM0 or
332 < LM1.  Results
333 < are normalized to 30 pb$^{-1}$.}
334 < \begin{tabular}{|c||c|c||c|c|}
212 < \hline
213 < SM         & LM0         & BG Prediction & LM1          & BG Prediction \\
214 < Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
215 < x          & x           & x             & x            & x \\
330 > \caption{\label{tab:sigcont} Effects of signal contamination
331 > for the two data-driven background estimates. The three columns give
332 > the expected yield in the signal region and the background estimates
333 > using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.}
334 > \begin{tabular}{lccc}
335   \hline
336 < \end{tabular}
337 < \end{center}
338 < \end{table}
339 <
340 < \begin{table}[htb]
222 < \begin{center}
223 < \caption{\label{tab:sigcontPT} Effects of signal contamination
224 < for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
225 < LM1.  Results
226 < are normalized to 30 pb$^{-1}$.}
227 < \begin{tabular}{|c||c|c||c|c|}
228 < \hline
229 < SM         & LM0         & BG Prediction & LM1          & BG Prediction \\
230 < Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
231 < x          & x           & x             & x            & x \\
336 >            &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
337 > \hline
338 > SM only     &       1.29      &      1.25    &           0.92    \\
339 > SM + LM0    &       7.57      &      4.44    &           1.96    \\
340 > SM + LM1    &       3.85      &      1.60    &           1.43    \\
341   \hline
342   \end{tabular}
343   \end{center}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines