ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.9 by claudioc, Fri Nov 5 23:07:42 2010 UTC vs.
Revision 1.33 by benhoob, Fri Dec 3 14:15:04 2010 UTC

# Line 2 | Line 2
2   \label{sec:datadriven}
3   We have developed two data-driven methods to
4   estimate the background in the signal region.
5 < The first one explouts the fact that
6 < \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
5 > The first one exploits the fact that
6 > SumJetPt and \met$/\sqrt{\rm SumJetPt}$ are nearly
7   uncorrelated for the $t\bar{t}$ background
8   (Section~\ref{sec:abcd});  the second one
9   is based on the fact that in $t\bar{t}$ the
# Line 12 | Line 12 | nearly the same as the $P_T$ of the pair
12   from $W$-decays, which is reconstructed as \met in the
13   detector.
14  
15 < In 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
16 < the signal region.  The expectations from the LMO
17 < and LM1 SUSY benchmark points are 5.6 and
18 < 2.2 events respectively.
15 >
16   %{\color{red} I took these
17   %numbers from the twiki, rescaling from 11.06 to 30/pb.
18   %They seem too large...are they really right?}
# Line 24 | Line 21 | and LM1 SUSY benchmark points are 5.6 an
21   \subsection{ABCD method}
22   \label{sec:abcd}
23  
24 < We find that in $t\bar{t}$ events \met and
25 < \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated.
26 < This is demonstrated in Figure~\ref{fig:uncor}.
24 > We find that in $t\bar{t}$ events SumJetPt and
25 > \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 > as demonstrated in Fig.~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
30 < \begin{figure}[tb]
30 > %\begin{figure}[bht]
31 > %\begin{center}
32 > %\includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
33 > %\caption{\label{fig:uncor}\protect Distributions of SumJetPt
34 > %in MC $t\bar{t}$ events for different intervals of
35 > %MET$/\sqrt{\rm SumJetPt}$.}
36 > %\end{center}
37 > %\end{figure}
38 >
39 > \begin{figure}[bht]
40   \begin{center}
41 < \includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
41 > \includegraphics[width=0.75\linewidth]{uncor.png}
42   \caption{\label{fig:uncor}\protect Distributions of SumJetPt
43   in MC $t\bar{t}$ events for different intervals of
44 < MET$/\sqrt{\rm SumJetPt}$.}
44 > MET$/\sqrt{\rm SumJetPt}$. h1, h2, and h3 refer to the MET$/\sqrt{\rm SumJetPt}$
45 > intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively.}
46   \end{center}
47   \end{figure}
48  
49 < \begin{figure}[bt]
49 > \begin{figure}[tb]
50   \begin{center}
51 < \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
52 < \caption{\label{fig:abcdMC}\protect Distributions of SumJetPt
53 < vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo.  Here we also
54 < show our choice of ABCD regions.}
51 > \includegraphics[width=0.75\linewidth]{ttdil_uncor_38X.png}
52 > \caption{\label{fig:abcdMC}\protect Distributions of MET$/\sqrt{\rm SumJetPt}$ vs.
53 > SumJetPt for SM Monte Carlo.  Here we also show our choice of ABCD regions. The correlation coefficient
54 > ${\rm corr_{XY}}$ is computed for events falling in the ABCD regions.}
55   \end{center}
56   \end{figure}
57  
58  
59   Our choice of ABCD regions is shown in Figure~\ref{fig:abcdMC}.
60   The signal region is region D.  The expected number of events
61 < in the four regions for the SM Monte Carlo, as well as the BG
62 < prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
63 < luminosity of 30 pb$^{-1}$.  The ABCD method is accurate
64 < to about 10\%.
61 > in the four regions for the SM Monte Carlo, as well as the background
62 > prediction A $\times$ C / B are given in Table~\ref{tab:abcdMC} for an integrated
63 > luminosity of 35 pb$^{-1}$. In Table~\ref{tab:abcdsyst}, we test the stability of
64 > observed/predicted with respect to variations in the ABCD boundaries.
65 > Based on the results in Tables~\ref{tab:abcdMC} and~\ref{tab:abcdsyst}, we assess
66 > a systematic uncertainty of 20\% on the prediction of the ABCD method.
67 >
68 > %As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties
69 > %by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty,
70 > %which we take as $\pm$5\% for SumJetPt and $\pm$2.5\% for MET/$\sqrt{\rm SumJetPt}$, since the
71 > %uncertainty on this quantity partially cancels due to the fact that it is a ratio of correlated
72 > %quantities. Based on these studies we assess a correction factor $k_{ABCD} = 1.2 \pm 0.2$ to the
73 > %predicted yield using the ABCD method.
74 >
75 >
76   %{\color{red} Avi wants some statement about stability
77   %wrt changes in regions.  I am not sure that we have done it and
78   %I am not sure it is necessary (Claudio).}
79  
80 < \begin{table}[htb]
80 > \begin{table}[ht]
81   \begin{center}
82   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
83 < 30 pb$^{-1}$ in the ABCD regions.}
84 < \begin{tabular}{|l|c|c|c|c||c|}
83 > 35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
84 > the signal region given by A $\times$ C / B. Here `SM other' is the sum
85 > of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
86 > $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
87 > \begin{tabular}{lccccc}
88 > \hline
89 >              sample   &                   A   &                   B   &                   C   &                   D   &                      A $\times$ C / B  \\
90 > \hline
91 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &   8.27  $\pm$  0.18   &  32.16  $\pm$  0.35   &   4.69  $\pm$  0.13   &   1.05  $\pm$  0.06   &   1.21  $\pm$  0.04  \\
92 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &   0.22  $\pm$  0.11   &   1.54  $\pm$  0.29   &   0.05  $\pm$  0.05   &   0.16  $\pm$  0.09   &   0.01  $\pm$  0.01  \\
93 >            SM other                     &   0.54  $\pm$  0.03   &   2.28  $\pm$  0.12   &   0.23  $\pm$  0.03   &   0.07  $\pm$  0.01   &   0.05  $\pm$  0.01  \\
94 > \hline
95 >         total SM MC                     &   9.03  $\pm$  0.21   &  35.97  $\pm$  0.46   &   4.97  $\pm$  0.15   &   1.29  $\pm$  0.11   &   1.25  $\pm$  0.05  \\
96 > \hline
97 > \end{tabular}
98 > \end{center}
99 > \end{table}
100 >
101 >
102 >
103 > \begin{table}[ht]
104 > \begin{center}
105 > \caption{\label{tab:abcdsyst}
106 > {\bf \color{red} Do we need this study at all? Observed/predicted is consistent within stat uncertainties as the boundaries are varied- is it enough to simply state this fact in the text??? }
107 > Results of the systematic study of the ABCD method by varying the boundaries
108 > between the ABCD regions shown in Fig.~\ref{fig:abcdMC}. Here $x_1$ is the lower SumJetPt boundary and
109 > $x_2$ is the boundary separating regions A and B from C and D, their nominal values are 125 and 300~GeV,
110 > respectively. $y_1$ is the lower MET/$\sqrt{\rm SumJetPt}$ boundary and
111 > $y_2$ is the boundary separating regions B and C from A and D, their nominal values are 4.5 and 8.5~GeV$^{1/2}$,
112 > respectively.}
113 > \begin{tabular}{cccc|c}
114 > \hline
115 > $x_1$   &   $x_2$ & $y_1$   &   $y_2$ & Observed/Predicted \\
116 > \hline
117 > nominal & nominal & nominal & nominal & $1.03 \pm 0.10$    \\
118 > +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.13 \pm 0.13$    \\
119 > +5\%    & +5\%    & nominal & nominal & $1.08 \pm 0.12$    \\
120 > nominal & nominal & +2.5\%  & +2.5\%  & $1.07 \pm 0.11$    \\
121 > nominal & +5\%    & nominal & +2.5\%  & $1.09 \pm 0.12$    \\
122 > nominal & -5\%    & nominal & -2.5\%  & $0.98 \pm 0.08$    \\
123 > -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.03 \pm 0.09$    \\
124 > +5\%    & +5\%    & -2.5\%  & -2.5\%  & $1.03 \pm 0.11$    \\
125   \hline
68 Sample   & A   & B    & C   & D   & AC/D \\ \hline
69 ttdil    & 6.9 & 28.6 & 4.2 & 1.0 & 1.0  \\
70 Zjets    & 0.0 & 1.3  & 0.1 & 0.1 & 0.0  \\
71 Other SM & 0.5 & 2.0  & 0.1 & 0.1 & 0.0  \\ \hline
72 total MC & 7.4 & 31.9 & 4.4 & 1.2 & 1.0 \\ \hline
126   \end{tabular}
127   \end{center}
128   \end{table}
# Line 90 | Line 143 | In practice one has to rescale the resul
143   to account for the fact that any dilepton selection must include a
144   moderate \met cut in order to reduce Drell Yan backgrounds.  This
145   is discussed in Section 5.3 of Reference~\cite{ref:ourvictory}; for a \met
146 < cut of 50 GeV, the rescaling factor is obtained from the data as
146 > cut of 50 GeV, the rescaling factor is obtained from the MC as
147  
148   \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
149   \begin{center}
150 < $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~}$
150 > $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~} = 1.52$
151   \end{center}
152  
153  
154 < Monte Carlo studies give values of $K$ that are typically between 1.5 and 1.6,
155 < depending on selection details.   Given the integrated luminosity of the
156 < present dataset, the determination of $K$ in data is severely statistics
157 < limited.  Thus, we take $K$ from $t\bar{t}$ Monte Carlo as
158 <
159 < \begin{center}
160 < $ K_{MC} = \frac{\int_0^{\infty} {\cal N}(\met)~~d\met~}{\int_{50}^{\infty} {\cal N}(\met)~~d\met~}$
161 < \end{center}
154 > %%%TO BE REPLACED
155 > %Given the integrated luminosity of the
156 > %present dataset, the determination of $K$ in data is severely statistics
157 > %limited.  Thus, we take $K$ from $t\bar{t}$ Monte Carlo as
158 >
159 > %\begin{center}
160 > %$ K_{MC} = \frac{\int_0^{\infty} {\cal N}(\met)~~d\met~}{\int_{50}^{\infty} {\cal N}(\met)~~d\met~}$
161 > %\end{center}
162  
163 < \noindent {\color{red} For the 11 pb result we have used $K$ from data.}
163 > %\noindent {\color{red} For the 11 pb result we have used $K$ from data.}
164  
165   There are several effects that spoil the correspondance between \met and
166   $P_T(\ell\ell)$:
167   \begin{itemize}
168   \item $Ws$ in top events are polarized.  Neutrinos are emitted preferentially
169 < forward in the $W$ rest frame, thus the $P_T(\nu\nu)$ distribution is harder
169 > parallel to the $W$ velocity while charged leptons are emitted prefertially
170 > anti-parallel. Thus the $P_T(\nu\nu)$ distribution is harder
171   than the $P_T(\ell\ell)$ distribution for top dilepton events.
172   \item The lepton selections results in $P_T$ and $\eta$ cuts on the individual
173   leptons that have no simple correspondance to the neutrino requirements.
174   \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
175   neutrinos which is only partially compensated by the $K$ factor above.
176   \item The \met resolution is much worse than the dilepton $P_T$ resolution.
177 < When convoluted with a falling spectrum in the tails of \met, this result
177 > When convoluted with a falling spectrum in the tails of \met, this results
178   in a harder spectrum for \met than the original $P_T(\nu\nu)$.
179   \item The \met response in CMS is not exactly 1.  This causes a distortion
180   in the \met distribution that is not present in the $P_T(\ell\ell)$ distribution.
# Line 131 | Line 185 | of $P_T(\ell\ell)$ and $P_T(\nu\nu)$ do
185   sources.  These events can affect the background prediction.  Particularly
186   dangerous are high $P_T$ Drell Yan events that barely pass the \met$>$ 50
187   GeV selection.  They will tend to push the data-driven background prediction up.
188 + Therefore we estimate the number of DY events entering the background prediction
189 + using the $R_{out/in}$ method as described in Sec.~\ref{sec:othBG}.
190   \end{itemize}
191  
192   We have studied these effects in SM Monte Carlo, using a mixture of generator and
# Line 141 | Line 197 | The results are summarized in Table~\ref
197  
198   \begin{table}[htb]
199   \begin{center}
200 < \caption{\label{tab:victorybad} Test of the data driven method in Monte Carlo
200 > \caption{\label{tab:victorybad}
201 > {\bf \color{red} Should we either update this with 38X MC  or remove it?? }
202 > Test of the data driven method in Monte Carlo
203   under different assumptions.  See text for details.}
204   \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
205   \hline
206   & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & Z veto & \met $>$ 50& obs/pred \\
207 < & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &  \\ \hline
207 > & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &       \\ \hline
208   1&Y                        &     N          &   N      &  GEN    &   N             &   N    & N          & 1.90  \\
209   2&Y                        &     N          &   N      &  GEN    &   Y             &   N    & N          & 1.64  \\
210   3&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & N          & 1.59  \\
211   4&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & Y          & 1.55  \\
212   5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
213   6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
214 < 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.18  \\
214 > 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.38  \\
215   \hline
216   \end{tabular}
217   \end{center}
218   \end{table}
219  
220  
221 + \begin{table}[htb]
222 + \begin{center}
223 + \caption{\label{tab:victorysyst}
224 + Summary of uncertainties in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton.
225 + In the first table, `up' and `down' refer to shifting the hadronic energy scale up and down by 5\%. In the second table, the quoted value
226 + refers to the amount of additional smearing of the MET, as discussed in the text. In the third table, the normalization of all backgrounds
227 + other than $t\bar{t} \to$~dilepton is varied.
228 + {\bf \color{red} Should I remove `observed' and `predicted' and show only the ratio? }}
229 +
230 + \begin{tabular}{ lcccc }
231 + \hline
232 +       MET scale  &      Predicted       &       Observed       &       Obs/pred       \\
233 + \hline
234 +        nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
235 +            up    &  0.92 $ \pm $ 0.11   &  1.53 $ \pm $ 0.12   &  1.66 $ \pm $ 0.23   \\
236 +          down    &  0.81 $ \pm $ 0.07   &  1.08 $ \pm $ 0.11   &  1.32 $ \pm $ 0.17   \\
237 + \hline
238 +   MET smearing   &      Predicted       &       Observed        &       Obs/pred      \\
239 + \hline
240 +        nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
241 +           10\%   &  0.90 $ \pm $ 0.11   &  1.30 $ \pm $ 0.11   &  1.44 $ \pm $ 0.21   \\
242 +           20\%   &  0.84 $ \pm $ 0.07   &  1.36 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
243 +           30\%   &  1.05 $ \pm $ 0.18   &  1.32 $ \pm $ 0.11   &  1.27 $ \pm $ 0.24   \\
244 +           40\%   &  0.85 $ \pm $ 0.07   &  1.37 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
245 +           50\%   &  1.08 $ \pm $ 0.18   &  1.36 $ \pm $ 0.11   &  1.26 $ \pm $ 0.24   \\
246 + \hline
247 +  non-$t\bar{t} \to$~dilepton scale factor   &          Predicted   &           Observed   &           Obs/pred   \\
248 + \hline
249 +   ttdil only                                &  0.77 $ \pm $ 0.07   &  1.05 $ \pm $ 0.06   &  1.36 $ \pm $ 0.14   \\
250 +   nominal                                   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
251 +   double non-ttdil yield                    &  1.06 $ \pm $ 0.18   &  1.52 $ \pm $ 0.20   &  1.43 $ \pm $ 0.30   \\
252 + \hline
253 + \end{tabular}
254 + \end{center}
255 + \end{table}
256 +
257 +
258 +
259   The largest discrepancy between prediction and observation occurs on the first
260   line of Table~\ref{tab:victorybad}, {\em i.e.}, at the generator level with no
261   cuts.  We have verified that this effect is due to the polarization of
# Line 171 | Line 267 | Going from GEN to RECOSIM, the change in
267   % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
268   %for each 1.5\% change in \met response.}.  
269   Finally, contamination from non $t\bar{t}$
270 < events can have a significant impact on the BG prediction.  The changes between
271 < lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
272 < Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
273 < is statistically not well quantified).
270 > events can have a significant impact on the BG prediction.  
271 > %The changes between
272 > %lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
273 > %Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
274 > %is statistically not well quantified).
275  
276   An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
277   not include effects of spin correlations between the two top quarks.  
278   We have studied this effect at the generator level using Alpgen.  We find
279   that the bias is at the few percent level.
280  
281 < Based on the results of Table~\ref{tab:victorybad}, we conclude that the
282 < naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
283 < be corrected by a factor of {\color{red} $ K_{\rm{fudge}} =1.2 \pm 0.3$
284 < (We still need to settle on thie exact value of this.
285 < For the 11 pb analysis it is taken as =1.)} . The quoted
286 < uncertainty is based on the stability of the Monte Carlo tests under
287 < variations of event selections, choices of \met algorithm, etc.
288 < For example, we find that observed/predicted changes by roughly 0.1
289 < for each 1.5\% change in the average \met response.  
290 <
281 > Based on the results of Table~\ref{tab:victorysyst}, we conclude that the
282 > naive data-driven background estimate based on $P_T{(\ell\ell)}$ needs to
283 > be corrected by a factor of $ K_C = 1.4 \pm 0.2({\rm stat})$.
284 >
285 > The dominant sources of systematic uncertainty in $K_C$ are due to non-$t\bar{t} \to$~dilepton backgrounds,
286 > and the MET scale and resolution uncertainties, as summarized in Table~\ref{tab:victorysyst}.
287 > The impact of non-$t\bar{t}$-dilepton background is assessed
288 > by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton.
289 > The uncertainty is assessed as the larger of the differences between the nominal $K_C$ value and the values
290 > obtained using only $t\bar{t} \to$~dilepton MC and obtained by doubling the non $t\bar{t} \to$~dilepton component,
291 > giving an uncertainty of $0.04$.
292 >
293 > The uncertainty in $K_C$ due to the MET scale uncertainty is assessed by varying the hadronic energy scale using
294 > the same method as in~\cite{ref:top}, giving an uncertainty of 0.3. We also assess the impact of the MET resolution
295 > uncertainty on $K_C$ by applying a random smearing to the MET. For each event, we determine the expected MET resolution
296 > based on the sumJetPt, and smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%.
297 > The results show that $K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty.
298  
299 + Incorporating all the statistical and systematic uncertainties we find $K_C = 1.4 \pm 0.4$.
300  
301   \subsection{Signal Contamination}
302   \label{sec:sigcont}
# Line 215 | Line 320 | in the ABCD method but not in the $P_T(\
320  
321   The LM points are benchmarks for SUSY analyses at CMS.  The effects
322   of signal contaminations for a couple such points are summarized
323 < in Table~\ref{tab:sigcontABCD} and~\ref{tab:sigcontPT}.
219 < Signal contamination is definitely an important
323 > in Table~\ref{tab:sigcont}. Signal contamination is definitely an important
324   effect for these two LM points, but it does not totally hide the
325   presence of the signal.
326  
327  
328   \begin{table}[htb]
329   \begin{center}
330 < \caption{\label{tab:sigcontABCD} Effects of signal contamination
331 < for the background predictions of the ABCD method including LM0 or
332 < LM1.  Results
333 < are normalized to 30 pb$^{-1}$.}
334 < \begin{tabular}{|c||c|c||c|c|}
231 < \hline
232 < SM         & SM$+$LM0    & BG Prediction & SM$+$LM1     & BG Prediction \\
233 < Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
234 < 1.2        & 6.8         & 3.7           & 3.4          & 1.3 \\
330 > \caption{\label{tab:sigcont} Effects of signal contamination
331 > for the two data-driven background estimates. The three columns give
332 > the expected yield in the signal region and the background estimates
333 > using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.}
334 > \begin{tabular}{lccc}
335   \hline
336 < \end{tabular}
337 < \end{center}
338 < \end{table}
339 <
340 < \begin{table}[htb]
241 < \begin{center}
242 < \caption{\label{tab:sigcontPT} Effects of signal contamination
243 < for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
244 < LM1.  Results
245 < are normalized to 30 pb$^{-1}$.}
246 < \begin{tabular}{|c||c|c||c|c|}
247 < \hline
248 < SM         & SM$+$LM0    & BG Prediction & SM$+$LM1     & BG Prediction \\
249 < Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
250 < 1.2        & 6.8         & 2.2           & 3.4          & 1.5 \\
336 >            &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
337 > \hline
338 > SM only     &       1.29      &      1.25    &           0.92    \\
339 > SM + LM0    &       7.57      &      4.44    &           1.96    \\
340 > SM + LM1    &       3.85      &      1.60    &           1.43    \\
341   \hline
342   \end{tabular}
343   \end{center}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines