ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.1 by claudioc, Thu Oct 28 05:28:08 2010 UTC vs.
Revision 1.34 by benhoob, Fri Dec 3 14:17:47 2010 UTC

# Line 2 | Line 2
2   \label{sec:datadriven}
3   We have developed two data-driven methods to
4   estimate the background in the signal region.
5 < The first one explouts the fact that
6 < \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
5 > The first one exploits the fact that
6 > SumJetPt and \met$/\sqrt{\rm SumJetPt}$ are nearly
7   uncorrelated for the $t\bar{t}$ background
8   (Section~\ref{sec:abcd});  the second one
9   is based on the fact that in $t\bar{t}$ the
# Line 12 | Line 12 | nearly the same as the $P_T$ of the pair
12   from $W$-decays, which is reconstructed as \met in the
13   detector.
14  
15 < in 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
16 < the signal region.  The expectations from the LMO
17 < and LM1 SUSY benchmark points are {\color{red} XX} and
18 < {\color{red} XX} events respectively.
15 >
16 > %{\color{red} I took these
17 > %numbers from the twiki, rescaling from 11.06 to 30/pb.
18 > %They seem too large...are they really right?}
19  
20  
21   \subsection{ABCD method}
22   \label{sec:abcd}
23  
24 < We find that in $t\bar{t}$ events \met and
25 < \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated.
26 < This is demonstrated in Figure~\ref{fig:uncor}.
24 > We find that in $t\bar{t}$ events SumJetPt and
25 > \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 > as demonstrated in Fig.~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
30 < \begin{figure}[htb]
30 > %\begin{figure}[bht]
31 > %\begin{center}
32 > %\includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
33 > %\caption{\label{fig:uncor}\protect Distributions of SumJetPt
34 > %in MC $t\bar{t}$ events for different intervals of
35 > %MET$/\sqrt{\rm SumJetPt}$.}
36 > %\end{center}
37 > %\end{figure}
38 >
39 > \begin{figure}[bht]
40   \begin{center}
41 < \includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
41 > \includegraphics[width=0.75\linewidth]{uncor.png}
42   \caption{\label{fig:uncor}\protect Distributions of SumJetPt
43   in MC $t\bar{t}$ events for different intervals of
44 < MET$/\sqrt{\rm SumJetPt}$.}
44 > MET$/\sqrt{\rm SumJetPt}$. h1, h2, and h3 refer to the MET$/\sqrt{\rm SumJetPt}$
45 > intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively.}
46   \end{center}
47   \end{figure}
48  
49 < \begin{figure}[htb]
49 > \begin{figure}[tb]
50   \begin{center}
51 < \includegraphics[width=0.75\linewidth]{abcdMC.jpg}
52 < \caption{\label{fig:abcdMC}\protect Distributions of SumJetPt
53 < vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo.  Here we also
54 < show our choice of ABCD regions. {\color{red} We need a better
45 < picture with the letters A-B-C-D and with the numerical values
46 < of the boundaries clearly indicated.}}
51 > \includegraphics[width=0.75\linewidth]{ttdil_uncor_38X.png}
52 > \caption{\label{fig:abcdMC}\protect Distributions of MET$/\sqrt{\rm SumJetPt}$ vs.
53 > SumJetPt for SM Monte Carlo.  Here we also show our choice of ABCD regions. The correlation coefficient
54 > ${\rm corr_{XY}}$ is computed for events falling in the ABCD regions.}
55   \end{center}
56   \end{figure}
57  
58  
59   Our choice of ABCD regions is shown in Figure~\ref{fig:abcdMC}.
60   The signal region is region D.  The expected number of events
61 < in the four regions for the SM Monte Carlo, as well as the BG
62 < prediction AC/B is given in Table~\ref{tab:abcdMC} for an integrated
63 < luminosity of 30 pb$^{-1}$.  The ABCD method is accurate
64 < to about 10\%.
61 > in the four regions for the SM Monte Carlo, as well as the background
62 > prediction A $\times$ C / B are given in Table~\ref{tab:abcdMC} for an integrated
63 > luminosity of 35 pb$^{-1}$. In Table~\ref{tab:abcdsyst}, we test the stability of
64 > observed/predicted with respect to variations in the ABCD boundaries.
65 > Based on the results in Tables~\ref{tab:abcdMC} and~\ref{tab:abcdsyst}, we assess
66 > a systematic uncertainty of 20\% on the prediction of the ABCD method.
67 >
68 > %As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties
69 > %by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty,
70 > %which we take as $\pm$5\% for SumJetPt and $\pm$2.5\% for MET/$\sqrt{\rm SumJetPt}$, since the
71 > %uncertainty on this quantity partially cancels due to the fact that it is a ratio of correlated
72 > %quantities. Based on these studies we assess a correction factor $k_{ABCD} = 1.2 \pm 0.2$ to the
73 > %predicted yield using the ABCD method.
74 >
75 >
76 > %{\color{red} Avi wants some statement about stability
77 > %wrt changes in regions.  I am not sure that we have done it and
78 > %I am not sure it is necessary (Claudio).}
79  
80 < \begin{table}[htb]
80 > \begin{table}[ht]
81   \begin{center}
82   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
83 < 30 pb$^{-1}$ in the ABCD regions.}
84 < \begin{tabular}{|l|c|c|c|c||c|}
83 > 35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
84 > the signal region given by A $\times$ C / B. Here `SM other' is the sum
85 > of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
86 > $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
87 > \begin{tabular}{lccccc}
88 > \hline
89 >              sample   &                   A   &                   B   &                   C   &                   D   &                      A $\times$ C / B  \\
90 > \hline
91 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &   8.27  $\pm$  0.18   &  32.16  $\pm$  0.35   &   4.69  $\pm$  0.13   &   1.05  $\pm$  0.06   &   1.21  $\pm$  0.04  \\
92 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &   0.22  $\pm$  0.11   &   1.54  $\pm$  0.29   &   0.05  $\pm$  0.05   &   0.16  $\pm$  0.09   &   0.01  $\pm$  0.01  \\
93 >            SM other                     &   0.54  $\pm$  0.03   &   2.28  $\pm$  0.12   &   0.23  $\pm$  0.03   &   0.07  $\pm$  0.01   &   0.05  $\pm$  0.01  \\
94 > \hline
95 >         total SM MC                     &   9.03  $\pm$  0.21   &  35.97  $\pm$  0.46   &   4.97  $\pm$  0.15   &   1.29  $\pm$  0.11   &   1.25  $\pm$  0.05  \\
96 > \hline
97 > \end{tabular}
98 > \end{center}
99 > \end{table}
100 >
101 >
102 >
103 > \begin{table}[ht]
104 > \begin{center}
105 > \caption{\label{tab:abcdsyst}
106 > Results of the systematic study of the ABCD method by varying the boundaries
107 > between the ABCD regions shown in Fig.~\ref{fig:abcdMC}. Here $x_1$ is the lower SumJetPt boundary and
108 > $x_2$ is the boundary separating regions A and B from C and D, their nominal values are 125 and 300~GeV,
109 > respectively. $y_1$ is the lower MET/$\sqrt{\rm SumJetPt}$ boundary and
110 > $y_2$ is the boundary separating regions B and C from A and D, their nominal values are 4.5 and 8.5~GeV$^{1/2}$,
111 > respectively.}
112 > \begin{tabular}{cccc|c}
113 > \hline
114 > $x_1$   &   $x_2$ & $y_1$   &   $y_2$ & Observed/Predicted \\
115 > \hline
116 > nominal & nominal & nominal & nominal & $1.03 \pm 0.10$    \\
117 > +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.13 \pm 0.13$    \\
118 > +5\%    & +5\%    & nominal & nominal & $1.08 \pm 0.12$    \\
119 > nominal & nominal & +2.5\%  & +2.5\%  & $1.07 \pm 0.11$    \\
120 > nominal & +5\%    & nominal & +2.5\%  & $1.09 \pm 0.12$    \\
121 > nominal & -5\%    & nominal & -2.5\%  & $0.98 \pm 0.08$    \\
122 > -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.03 \pm 0.09$    \\
123 > +5\%    & +5\%    & -2.5\%  & -2.5\%  & $1.03 \pm 0.11$    \\
124   \hline
64 Sample   & A   & B    & C   & D   & AC/D \\ \hline
65 ttdil    & 6.4 & 28.4 & 4.2 & 1.0 & 0.9  \\
66 Zjets    & 0.0 & 1.3  & 0.2 & 0.0 & 0.0  \\
67 Other SM & 0.6 & 2.1  & 0.2 & 0.1 & 0.0  \\ \hline
68 total MC & 7.0 & 31.8 & 4.5 & 1.1 & 1.0 \\ \hline
125   \end{tabular}
126   \end{center}
127   \end{table}
128  
129 + \subsection{Dilepton $P_T$ method}
130 + \label{sec:victory}
131 + This method is based on a suggestion by V. Pavlunin\cite{ref:victory},
132 + and was investigated by our group in 2009\cite{ref:ourvictory}.
133 + The idea is that in dilepton $t\bar{t}$ events the lepton and neutrinos
134 + from $W$ decays have the same $P_T$ spectrum (modulo $W$ polarization
135 + effects).  One can then use the observed
136 + $P_T(\ell\ell)$ distribution to model the sum of neutrino $P_T$'s which
137 + is identified with the \met.
138 +
139 + Then, in order to predict the $t\bar{t} \to$ dilepton contribution to a
140 + selection with \met$+$X, one applies a cut on $P_T(\ell\ell)+$X instead.
141 + In practice one has to rescale the result of the $P_T(\ell\ell)+$X selection
142 + to account for the fact that any dilepton selection must include a
143 + moderate \met cut in order to reduce Drell Yan backgrounds.  This
144 + is discussed in Section 5.3 of Reference~\cite{ref:ourvictory}; for a \met
145 + cut of 50 GeV, the rescaling factor is obtained from the MC as
146 +
147 + \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
148 + \begin{center}
149 + $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~} = 1.52$
150 + \end{center}
151 +
152 +
153 + %%%TO BE REPLACED
154 + %Given the integrated luminosity of the
155 + %present dataset, the determination of $K$ in data is severely statistics
156 + %limited.  Thus, we take $K$ from $t\bar{t}$ Monte Carlo as
157 +
158 + %\begin{center}
159 + %$ K_{MC} = \frac{\int_0^{\infty} {\cal N}(\met)~~d\met~}{\int_{50}^{\infty} {\cal N}(\met)~~d\met~}$
160 + %\end{center}
161 +
162 + %\noindent {\color{red} For the 11 pb result we have used $K$ from data.}
163 +
164 + There are several effects that spoil the correspondance between \met and
165 + $P_T(\ell\ell)$:
166 + \begin{itemize}
167 + \item $Ws$ in top events are polarized.  Neutrinos are emitted preferentially
168 + parallel to the $W$ velocity while charged leptons are emitted prefertially
169 + anti-parallel. Thus the $P_T(\nu\nu)$ distribution is harder
170 + than the $P_T(\ell\ell)$ distribution for top dilepton events.
171 + \item The lepton selections results in $P_T$ and $\eta$ cuts on the individual
172 + leptons that have no simple correspondance to the neutrino requirements.
173 + \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
174 + neutrinos which is only partially compensated by the $K$ factor above.
175 + \item The \met resolution is much worse than the dilepton $P_T$ resolution.
176 + When convoluted with a falling spectrum in the tails of \met, this results
177 + in a harder spectrum for \met than the original $P_T(\nu\nu)$.
178 + \item The \met response in CMS is not exactly 1.  This causes a distortion
179 + in the \met distribution that is not present in the $P_T(\ell\ell)$ distribution.
180 + \item The $t\bar{t} \to$ dilepton signal includes contributions from
181 + $W \to \tau \to \ell$.  For these events the arguments about the equivalence
182 + of $P_T(\ell\ell)$ and $P_T(\nu\nu)$ do not apply.
183 + \item A dilepton selection will include SM events from non $t\bar{t}$
184 + sources.  These events can affect the background prediction.  Particularly
185 + dangerous are high $P_T$ Drell Yan events that barely pass the \met$>$ 50
186 + GeV selection.  They will tend to push the data-driven background prediction up.
187 + Therefore we estimate the number of DY events entering the background prediction
188 + using the $R_{out/in}$ method as described in Sec.~\ref{sec:othBG}.
189 + \end{itemize}
190 +
191 + We have studied these effects in SM Monte Carlo, using a mixture of generator and
192 + reconstruction level studies, putting the various effects in one at a time.
193 + For each configuration, we apply the data-driven method and report as figure
194 + of merit the ratio of observed and predicted events in the signal region.
195 + The results are summarized in Table~\ref{tab:victorybad}.
196  
197 + \begin{table}[htb]
198 + \begin{center}
199 + \caption{\label{tab:victorybad}
200 + {\bf \color{red} Should we either update this with 38X MC  or remove it?? }
201 + Test of the data driven method in Monte Carlo
202 + under different assumptions.  See text for details.}
203 + \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
204 + \hline
205 + & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & Z veto & \met $>$ 50& obs/pred \\
206 + & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &       \\ \hline
207 + 1&Y                        &     N          &   N      &  GEN    &   N             &   N    & N          & 1.90  \\
208 + 2&Y                        &     N          &   N      &  GEN    &   Y             &   N    & N          & 1.64  \\
209 + 3&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & N          & 1.59  \\
210 + 4&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & Y          & 1.55  \\
211 + 5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
212 + 6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
213 + 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.38  \\
214 + \hline
215 + \end{tabular}
216 + \end{center}
217 + \end{table}
218  
219  
220 + \begin{table}[htb]
221 + \begin{center}
222 + \caption{\label{tab:victorysyst}
223 + Summary of uncertainties in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton.
224 + In the first table, `up' and `down' refer to shifting the hadronic energy scale up and down by 5\%. In the second table, the quoted value
225 + refers to the amount of additional smearing of the MET, as discussed in the text. In the third table, the normalization of all backgrounds
226 + other than $t\bar{t} \to$~dilepton is varied.
227 + {\bf \color{red} Should I remove `observed' and `predicted' and show only the ratio? }}
228 +
229 + \begin{tabular}{ lcccc }
230 + \hline
231 +       MET scale  &      Predicted       &       Observed       &       Obs/pred       \\
232 + \hline
233 +        nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
234 +            up    &  0.92 $ \pm $ 0.11   &  1.53 $ \pm $ 0.12   &  1.66 $ \pm $ 0.23   \\
235 +          down    &  0.81 $ \pm $ 0.07   &  1.08 $ \pm $ 0.11   &  1.32 $ \pm $ 0.17   \\
236 + \hline
237 +   MET smearing   &      Predicted       &       Observed        &       Obs/pred      \\
238 + \hline
239 +        nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
240 +           10\%   &  0.90 $ \pm $ 0.11   &  1.30 $ \pm $ 0.11   &  1.44 $ \pm $ 0.21   \\
241 +           20\%   &  0.84 $ \pm $ 0.07   &  1.36 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
242 +           30\%   &  1.05 $ \pm $ 0.18   &  1.32 $ \pm $ 0.11   &  1.27 $ \pm $ 0.24   \\
243 +           40\%   &  0.85 $ \pm $ 0.07   &  1.37 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
244 +           50\%   &  1.08 $ \pm $ 0.18   &  1.36 $ \pm $ 0.11   &  1.26 $ \pm $ 0.24   \\
245 + \hline
246 +  non-$t\bar{t} \to$~dilepton scale factor   &          Predicted   &           Observed   &           Obs/pred   \\
247 + \hline
248 +   ttdil only                                &  0.77 $ \pm $ 0.07   &  1.05 $ \pm $ 0.06   &  1.36 $ \pm $ 0.14   \\
249 +   nominal                                   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
250 +   double non-ttdil yield                    &  1.06 $ \pm $ 0.18   &  1.52 $ \pm $ 0.20   &  1.43 $ \pm $ 0.30   \\
251 + \hline
252 + \end{tabular}
253 + \end{center}
254 + \end{table}
255 +
256 +
257 +
258 + The largest discrepancy between prediction and observation occurs on the first
259 + line of Table~\ref{tab:victorybad}, {\em i.e.}, at the generator level with no
260 + cuts.  We have verified that this effect is due to the polarization of
261 + the $W$ (we remove the polarization by reweighting the events and we get
262 + good agreement between prediction and observation).  The kinematical
263 + requirements (lines 2,3,4) compensate somewhat for the effect of W polarization.
264 + Going from GEN to RECOSIM, the change in observed/predicted is small.  
265 + % We have tracked this down to the fact that tcMET underestimates the true \met
266 + % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
267 + %for each 1.5\% change in \met response.}.  
268 + Finally, contamination from non $t\bar{t}$
269 + events can have a significant impact on the BG prediction.  
270 + %The changes between
271 + %lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
272 + %Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
273 + %is statistically not well quantified).
274 +
275 + An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
276 + not include effects of spin correlations between the two top quarks.  
277 + We have studied this effect at the generator level using Alpgen.  We find
278 + that the bias is at the few percent level.
279 +
280 + Based on the results of Table~\ref{tab:victorysyst}, we conclude that the
281 + naive data-driven background estimate based on $P_T{(\ell\ell)}$ needs to
282 + be corrected by a factor of $ K_C = 1.4 \pm 0.2({\rm stat})$.
283 +
284 + The dominant sources of systematic uncertainty in $K_C$ are due to non-$t\bar{t} \to$~dilepton backgrounds,
285 + and the MET scale and resolution uncertainties, as summarized in Table~\ref{tab:victorysyst}.
286 + The impact of non-$t\bar{t}$-dilepton background is assessed
287 + by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton.
288 + The uncertainty is assessed as the larger of the differences between the nominal $K_C$ value and the values
289 + obtained using only $t\bar{t} \to$~dilepton MC and obtained by doubling the non $t\bar{t} \to$~dilepton component,
290 + giving an uncertainty of $0.04$.
291 +
292 + The uncertainty in $K_C$ due to the MET scale uncertainty is assessed by varying the hadronic energy scale using
293 + the same method as in~\cite{ref:top}, giving an uncertainty of 0.3. We also assess the impact of the MET resolution
294 + uncertainty on $K_C$ by applying a random smearing to the MET. For each event, we determine the expected MET resolution
295 + based on the sumJetPt, and smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%.
296 + The results show that $K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty.
297 +
298 + Incorporating all the statistical and systematic uncertainties we find $K_C = 1.4 \pm 0.4$.
299 +
300 + \subsection{Signal Contamination}
301 + \label{sec:sigcont}
302 +
303 + All data-driven methods are in principle subject to signal contaminations
304 + in the control regions, and the methods described in
305 + Sections~\ref{sec:abcd} and~\ref{sec:victory} are not exceptions.
306 + Signal contamination tends to dilute the significance of a signal
307 + present in the data by inflating the background prediction.
308 +
309 + It is hard to quantify how important these effects are because we
310 + do not know what signal may be hiding in the data.  Having two
311 + independent methods (in addition to Monte Carlo ``dead-reckoning'')
312 + adds redundancy because signal contamination can have different effects
313 + in the different control regions for the two methods.
314 + For example, in the extreme case of a
315 + new physics signal
316 + with $P_T(\ell \ell) = \met$, an excess of events would be seen
317 + in the ABCD method but not in the $P_T(\ell \ell)$ method.
318 +
319 +
320 + The LM points are benchmarks for SUSY analyses at CMS.  The effects
321 + of signal contaminations for a couple such points are summarized
322 + in Table~\ref{tab:sigcont}. Signal contamination is definitely an important
323 + effect for these two LM points, but it does not totally hide the
324 + presence of the signal.
325 +
326 +
327 + \begin{table}[htb]
328 + \begin{center}
329 + \caption{\label{tab:sigcont} Effects of signal contamination
330 + for the two data-driven background estimates. The three columns give
331 + the expected yield in the signal region and the background estimates
332 + using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.}
333 + \begin{tabular}{lccc}
334 + \hline
335 +            &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
336 + \hline
337 + SM only     &       1.29      &      1.25    &           0.92    \\
338 + SM + LM0    &       7.57      &      4.44    &           1.96    \\
339 + SM + LM1    &       3.85      &      1.60    &           1.43    \\
340 + \hline
341 + \end{tabular}
342 + \end{center}
343 + \end{table}
344 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines