ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.26 by benhoob, Sat Nov 20 22:56:58 2010 UTC vs.
Revision 1.34 by benhoob, Fri Dec 3 14:17:47 2010 UTC

# Line 23 | Line 23 | detector.
23  
24   We find that in $t\bar{t}$ events SumJetPt and
25   \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 < as demonstrated in Figure~\ref{fig:uncor}.
26 > as demonstrated in Fig.~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
# Line 48 | Line 48 | intervals 4.5-6.5, 6.5-8.5 and $>$8.5, r
48  
49   \begin{figure}[tb]
50   \begin{center}
51 < \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
51 > \includegraphics[width=0.75\linewidth]{ttdil_uncor_38X.png}
52   \caption{\label{fig:abcdMC}\protect Distributions of MET$/\sqrt{\rm SumJetPt}$ vs.
53 < SumJetPt for SM Monte Carlo.  Here we also show our choice of ABCD regions.}
53 > SumJetPt for SM Monte Carlo.  Here we also show our choice of ABCD regions. The correlation coefficient
54 > ${\rm corr_{XY}}$ is computed for events falling in the ABCD regions.}
55   \end{center}
56   \end{figure}
57  
58  
59   Our choice of ABCD regions is shown in Figure~\ref{fig:abcdMC}.
60   The signal region is region D.  The expected number of events
61 < in the four regions for the SM Monte Carlo, as well as the BG
62 < prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
63 < luminosity of 35 pb$^{-1}$.  The ABCD method with chosen boundaries is accurate
64 < to about 20\%. As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties
65 < by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty,
66 < which we take as $\pm$5\% for SumJetPt and $\pm$2.5\% for MET/$\sqrt{\rm SumJetPt}$, since the
67 < uncertainty on this quantity partially cancels due to the fact that it is a ratio of correlated
68 < quantities. Based on these studies we assess a correction factor $k_{ABCD} = 1.2 \pm 0.2$ to the
69 < predicted yield using the ABCD method.
61 > in the four regions for the SM Monte Carlo, as well as the background
62 > prediction A $\times$ C / B are given in Table~\ref{tab:abcdMC} for an integrated
63 > luminosity of 35 pb$^{-1}$. In Table~\ref{tab:abcdsyst}, we test the stability of
64 > observed/predicted with respect to variations in the ABCD boundaries.
65 > Based on the results in Tables~\ref{tab:abcdMC} and~\ref{tab:abcdsyst}, we assess
66 > a systematic uncertainty of 20\% on the prediction of the ABCD method.
67 >
68 > %As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties
69 > %by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty,
70 > %which we take as $\pm$5\% for SumJetPt and $\pm$2.5\% for MET/$\sqrt{\rm SumJetPt}$, since the
71 > %uncertainty on this quantity partially cancels due to the fact that it is a ratio of correlated
72 > %quantities. Based on these studies we assess a correction factor $k_{ABCD} = 1.2 \pm 0.2$ to the
73 > %predicted yield using the ABCD method.
74  
75  
76   %{\color{red} Avi wants some statement about stability
# Line 81 | Line 86 | of non-dileptonic $t\bar{t}$ decays, $W^
86   $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
87   \begin{tabular}{lccccc}
88   \hline
89 <         sample                          &              A   &              B   &              C   &              D   &    A $\times$ C / B \\
89 >              sample   &                   A   &                   B   &                   C   &                   D   &                      A $\times$ C / B  \\
90   \hline
91 < $t\bar{t}\rightarrow \ell^{+}\ell^{-}$         &   7.96  $\pm$  0.17   &  33.07  $\pm$  0.35   &   4.81  $\pm$  0.13   &   1.20  $\pm$  0.07   &   1.16  $\pm$  0.04  \\
92 < $Z^0 \rightarrow \ell^{+}\ell^{-}$             &   0.03  $\pm$  0.03   &   1.47  $\pm$  0.38   &   0.10  $\pm$  0.10   &   0.10  $\pm$  0.10   &   0.00  $\pm$  0.00  \\
93 <            SM other                           &   0.65  $\pm$  0.06   &   2.31  $\pm$  0.13   &   0.17  $\pm$  0.03   &   0.14  $\pm$  0.03   &   0.05  $\pm$  0.01  \\
91 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &   8.27  $\pm$  0.18   &  32.16  $\pm$  0.35   &   4.69  $\pm$  0.13   &   1.05  $\pm$  0.06   &   1.21  $\pm$  0.04  \\
92 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &   0.22  $\pm$  0.11   &   1.54  $\pm$  0.29   &   0.05  $\pm$  0.05   &   0.16  $\pm$  0.09   &   0.01  $\pm$  0.01  \\
93 >            SM other                     &   0.54  $\pm$  0.03   &   2.28  $\pm$  0.12   &   0.23  $\pm$  0.03   &   0.07  $\pm$  0.01   &   0.05  $\pm$  0.01  \\
94   \hline
95 <         total SM MC                           &   8.63  $\pm$  0.18   &  36.85  $\pm$  0.53   &   5.07  $\pm$  0.17   &   1.43  $\pm$  0.12   &   1.19  $\pm$  0.05  \\
95 >         total SM MC                     &   9.03  $\pm$  0.21   &  35.97  $\pm$  0.46   &   4.97  $\pm$  0.15   &   1.29  $\pm$  0.11   &   1.25  $\pm$  0.05  \\
96   \hline
97   \end{tabular}
98   \end{center}
# Line 97 | Line 102 | $Z^0 \rightarrow \ell^{+}\ell^{-}$
102  
103   \begin{table}[ht]
104   \begin{center}
105 < \caption{\label{tab:abcdsyst} Results of the systematic study of the ABCD method by varying the boundaries
105 > \caption{\label{tab:abcdsyst}
106 > Results of the systematic study of the ABCD method by varying the boundaries
107   between the ABCD regions shown in Fig.~\ref{fig:abcdMC}. Here $x_1$ is the lower SumJetPt boundary and
108   $x_2$ is the boundary separating regions A and B from C and D, their nominal values are 125 and 300~GeV,
109   respectively. $y_1$ is the lower MET/$\sqrt{\rm SumJetPt}$ boundary and
# Line 107 | Line 113 | respectively.}
113   \hline
114   $x_1$   &   $x_2$ & $y_1$   &   $y_2$ & Observed/Predicted \\
115   \hline
116 < nominal & nominal & nominal & nominal & $1.20 \pm 0.12$    \\
117 < +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.38 \pm 0.15$    \\
118 < +5\%    & +5\%    & nominal & nominal & $1.31 \pm 0.14$    \\
119 < nominal & nominal & +2.5\%  & +2.5\%  & $1.25 \pm 0.13$    \\
120 < nominal & +5\%    & nominal & +2.5\%  & $1.32 \pm 0.14$    \\
121 < nominal & -5\%    & nominal & -2.5\%  & $1.16 \pm 0.09$    \\
122 < -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.21 \pm 0.11$    \\
123 < +5\%    & +5\%    & -2.5\%  & -2.5\%  & $1.26 \pm 0.12$    \\
116 > nominal & nominal & nominal & nominal & $1.03 \pm 0.10$    \\
117 > +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.13 \pm 0.13$    \\
118 > +5\%    & +5\%    & nominal & nominal & $1.08 \pm 0.12$    \\
119 > nominal & nominal & +2.5\%  & +2.5\%  & $1.07 \pm 0.11$    \\
120 > nominal & +5\%    & nominal & +2.5\%  & $1.09 \pm 0.12$    \\
121 > nominal & -5\%    & nominal & -2.5\%  & $0.98 \pm 0.08$    \\
122 > -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.03 \pm 0.09$    \\
123 > +5\%    & +5\%    & -2.5\%  & -2.5\%  & $1.03 \pm 0.11$    \\
124   \hline
125   \end{tabular}
126   \end{center}
# Line 140 | Line 146 | cut of 50 GeV, the rescaling factor is o
146  
147   \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
148   \begin{center}
149 < $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~}$
149 > $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~} = 1.52$
150   \end{center}
151  
152  
147 Monte Carlo studies give values of $K$ that are typically between 1.5 and 1.6,
148 depending on selection details.  
153   %%%TO BE REPLACED
154   %Given the integrated luminosity of the
155   %present dataset, the determination of $K$ in data is severely statistics
# Line 192 | Line 196 | The results are summarized in Table~\ref
196  
197   \begin{table}[htb]
198   \begin{center}
199 < \caption{\label{tab:victorybad} Test of the data driven method in Monte Carlo
199 > \caption{\label{tab:victorybad}
200 > {\bf \color{red} Should we either update this with 38X MC  or remove it?? }
201 > Test of the data driven method in Monte Carlo
202   under different assumptions.  See text for details.}
203   \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
204   \hline
205   & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & Z veto & \met $>$ 50& obs/pred \\
206 < & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &  \\ \hline
206 > & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &       \\ \hline
207   1&Y                        &     N          &   N      &  GEN    &   N             &   N    & N          & 1.90  \\
208   2&Y                        &     N          &   N      &  GEN    &   Y             &   N    & N          & 1.64  \\
209   3&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & N          & 1.59  \\
# Line 205 | Line 211 | under different assumptions.  See text f
211   5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
212   6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
213   7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.38  \\
208 %%%NOTE: updated value 1.18 -> 1.46 since 2/3 DY events have been removed by updated analysis selections,
209 %%%dpt/pt cut and general lepton veto
214   \hline
215   \end{tabular}
216   \end{center}
217   \end{table}
218  
219  
220 + \begin{table}[htb]
221 + \begin{center}
222 + \caption{\label{tab:victorysyst}
223 + Summary of uncertainties in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton.
224 + In the first table, `up' and `down' refer to shifting the hadronic energy scale up and down by 5\%. In the second table, the quoted value
225 + refers to the amount of additional smearing of the MET, as discussed in the text. In the third table, the normalization of all backgrounds
226 + other than $t\bar{t} \to$~dilepton is varied.
227 + {\bf \color{red} Should I remove `observed' and `predicted' and show only the ratio? }}
228 +
229 + \begin{tabular}{ lcccc }
230 + \hline
231 +       MET scale  &      Predicted       &       Observed       &       Obs/pred       \\
232 + \hline
233 +        nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
234 +            up    &  0.92 $ \pm $ 0.11   &  1.53 $ \pm $ 0.12   &  1.66 $ \pm $ 0.23   \\
235 +          down    &  0.81 $ \pm $ 0.07   &  1.08 $ \pm $ 0.11   &  1.32 $ \pm $ 0.17   \\
236 + \hline
237 +   MET smearing   &      Predicted       &       Observed        &       Obs/pred      \\
238 + \hline
239 +        nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
240 +           10\%   &  0.90 $ \pm $ 0.11   &  1.30 $ \pm $ 0.11   &  1.44 $ \pm $ 0.21   \\
241 +           20\%   &  0.84 $ \pm $ 0.07   &  1.36 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
242 +           30\%   &  1.05 $ \pm $ 0.18   &  1.32 $ \pm $ 0.11   &  1.27 $ \pm $ 0.24   \\
243 +           40\%   &  0.85 $ \pm $ 0.07   &  1.37 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
244 +           50\%   &  1.08 $ \pm $ 0.18   &  1.36 $ \pm $ 0.11   &  1.26 $ \pm $ 0.24   \\
245 + \hline
246 +  non-$t\bar{t} \to$~dilepton scale factor   &          Predicted   &           Observed   &           Obs/pred   \\
247 + \hline
248 +   ttdil only                                &  0.77 $ \pm $ 0.07   &  1.05 $ \pm $ 0.06   &  1.36 $ \pm $ 0.14   \\
249 +   nominal                                   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
250 +   double non-ttdil yield                    &  1.06 $ \pm $ 0.18   &  1.52 $ \pm $ 0.20   &  1.43 $ \pm $ 0.30   \\
251 + \hline
252 + \end{tabular}
253 + \end{center}
254 + \end{table}
255 +
256 +
257 +
258   The largest discrepancy between prediction and observation occurs on the first
259   line of Table~\ref{tab:victorybad}, {\em i.e.}, at the generator level with no
260   cuts.  We have verified that this effect is due to the polarization of
# Line 235 | Line 277 | not include effects of spin correlations
277   We have studied this effect at the generator level using Alpgen.  We find
278   that the bias is at the few percent level.
279  
280 < %%%TO BE REPLACED
281 < %Based on the results of Table~\ref{tab:victorybad}, we conclude that the
282 < %naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
283 < %be corrected by a factor of {\color{red} $ K_{\rm{fudge}} =1.2 \pm 0.3$
284 < %(We still need to settle on thie exact value of this.
285 < %For the 11 pb analysis it is taken as =1.)} . The quoted
286 < %uncertainty is based on the stability of the Monte Carlo tests under
287 < %variations of event selections, choices of \met algorithm, etc.
288 < %For example, we find that observed/predicted changes by roughly 0.1
289 < %for each 1.5\% change in the average \met response.  
290 <
291 < Based on the results of Table~\ref{tab:victorybad}, we conclude that the
292 < naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
293 < be corrected by a factor of $ K_C = X \pm Y$.
294 < The value of this correction factor as well as the systematic uncertainty
295 < will be assessed using 38X ttbar madgraph MC. In the following we use
296 < $K_C = 1$ for simplicity. Based on previous MC studies we foresee a correction
255 < factor of $K_C \approx 1.2 - 1.5$, and we will assess an uncertainty
256 < based on the stability of the Monte Carlo tests under
257 < variations of event selections, choices of \met algorithm, etc.
258 < For example, we find that observed/predicted changes by roughly 0.1
259 < for each 1.5\% change in the average \met response.
260 <
280 > Based on the results of Table~\ref{tab:victorysyst}, we conclude that the
281 > naive data-driven background estimate based on $P_T{(\ell\ell)}$ needs to
282 > be corrected by a factor of $ K_C = 1.4 \pm 0.2({\rm stat})$.
283 >
284 > The dominant sources of systematic uncertainty in $K_C$ are due to non-$t\bar{t} \to$~dilepton backgrounds,
285 > and the MET scale and resolution uncertainties, as summarized in Table~\ref{tab:victorysyst}.
286 > The impact of non-$t\bar{t}$-dilepton background is assessed
287 > by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton.
288 > The uncertainty is assessed as the larger of the differences between the nominal $K_C$ value and the values
289 > obtained using only $t\bar{t} \to$~dilepton MC and obtained by doubling the non $t\bar{t} \to$~dilepton component,
290 > giving an uncertainty of $0.04$.
291 >
292 > The uncertainty in $K_C$ due to the MET scale uncertainty is assessed by varying the hadronic energy scale using
293 > the same method as in~\cite{ref:top}, giving an uncertainty of 0.3. We also assess the impact of the MET resolution
294 > uncertainty on $K_C$ by applying a random smearing to the MET. For each event, we determine the expected MET resolution
295 > based on the sumJetPt, and smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%.
296 > The results show that $K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty.
297  
298 + Incorporating all the statistical and systematic uncertainties we find $K_C = 1.4 \pm 0.4$.
299  
300   \subsection{Signal Contamination}
301   \label{sec:sigcont}
# Line 297 | Line 334 | using the ABCD and $P_T(\ell \ell)$ meth
334   \hline
335              &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
336   \hline
337 < SM only     &      1.43       &      1.19    &             1.03  \\
338 < SM + LM0    &      7.90       &      4.23    &             2.35  \\
339 < SM + LM1    &      4.00       &      1.53    &             1.51  \\
337 > SM only     &       1.29      &      1.25    &           0.92    \\
338 > SM + LM0    &       7.57      &      4.44    &           1.96    \\
339 > SM + LM1    &       3.85      &      1.60    &           1.43    \\
340   \hline
341   \end{tabular}
342   \end{center}
343   \end{table}
344  
308
309
310 %\begin{table}[htb]
311 %\begin{center}
312 %\caption{\label{tab:sigcontABCD} Effects of signal contamination
313 %for the background predictions of the ABCD method including LM0 or
314 %LM1.  Results
315 %are normalized to 30 pb$^{-1}$.}
316 %\begin{tabular}{|c|c||c|c||c|c|}
317 %\hline
318 %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
319 %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
320 %1.2        & 1.0            & 6.8          & 3.7           & 3.4          & 1.3 \\
321 %\hline
322 %\end{tabular}
323 %\end{center}
324 %\end{table}
325
326 %\begin{table}[htb]
327 %\begin{center}
328 %\caption{\label{tab:sigcontPT} Effects of signal contamination
329 %for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
330 %LM1.  Results
331 %are normalized to 30 pb$^{-1}$.}
332 %\begin{tabular}{|c|c||c|c||c|c|}
333 %\hline
334 %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
335 %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
336 %1.2        & 1.0            & 6.8          & 2.2           & 3.4          & 1.5 \\
337 %\hline
338 %\end{tabular}
339 %\end{center}
340 %\end{table}
341

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines