ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.29 by benhoob, Thu Dec 2 15:04:23 2010 UTC vs.
Revision 1.34 by benhoob, Fri Dec 3 14:17:47 2010 UTC

# Line 23 | Line 23 | detector.
23  
24   We find that in $t\bar{t}$ events SumJetPt and
25   \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 < as demonstrated in Figure~\ref{fig:uncor}.
26 > as demonstrated in Fig.~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
# Line 48 | Line 48 | intervals 4.5-6.5, 6.5-8.5 and $>$8.5, r
48  
49   \begin{figure}[tb]
50   \begin{center}
51 < \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
51 > \includegraphics[width=0.75\linewidth]{ttdil_uncor_38X.png}
52   \caption{\label{fig:abcdMC}\protect Distributions of MET$/\sqrt{\rm SumJetPt}$ vs.
53 < SumJetPt for SM Monte Carlo.  Here we also show our choice of ABCD regions.}
53 > SumJetPt for SM Monte Carlo.  Here we also show our choice of ABCD regions. The correlation coefficient
54 > ${\rm corr_{XY}}$ is computed for events falling in the ABCD regions.}
55   \end{center}
56   \end{figure}
57  
# Line 59 | Line 60 | Our choice of ABCD regions is shown in F
60   The signal region is region D.  The expected number of events
61   in the four regions for the SM Monte Carlo, as well as the background
62   prediction A $\times$ C / B are given in Table~\ref{tab:abcdMC} for an integrated
63 < luminosity of 35 pb$^{-1}$.  The ABCD method with chosen boundaries is accurate
64 < to about 20\%, and we assess a corresponding systematic uncertainty.
63 > luminosity of 35 pb$^{-1}$. In Table~\ref{tab:abcdsyst}, we test the stability of
64 > observed/predicted with respect to variations in the ABCD boundaries.
65 > Based on the results in Tables~\ref{tab:abcdMC} and~\ref{tab:abcdsyst}, we assess
66 > a systematic uncertainty of 20\% on the prediction of the ABCD method.
67  
68   %As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties
69   %by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty,
# Line 100 | Line 103 | $Z^0 \rightarrow \ell^{+}\ell^{-}$
103   \begin{table}[ht]
104   \begin{center}
105   \caption{\label{tab:abcdsyst}
103 {\bf \color{red} Do we need this study at all? Observed/predicted is consistent within stat uncertainties as the boundaries are varied- is it enough to simply state this fact in the text??? }
106   Results of the systematic study of the ABCD method by varying the boundaries
107   between the ABCD regions shown in Fig.~\ref{fig:abcdMC}. Here $x_1$ is the lower SumJetPt boundary and
108   $x_2$ is the boundary separating regions A and B from C and D, their nominal values are 125 and 300~GeV,
# Line 111 | Line 113 | respectively.}
113   \hline
114   $x_1$   &   $x_2$ & $y_1$   &   $y_2$ & Observed/Predicted \\
115   \hline
116 < nominal & nominal & nominal & nominal & $1.20 \pm 0.12$    \\
117 < +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.38 \pm 0.15$    \\
118 < +5\%    & +5\%    & nominal & nominal & $1.31 \pm 0.14$    \\
119 < nominal & nominal & +2.5\%  & +2.5\%  & $1.25 \pm 0.13$    \\
120 < nominal & +5\%    & nominal & +2.5\%  & $1.32 \pm 0.14$    \\
121 < nominal & -5\%    & nominal & -2.5\%  & $1.16 \pm 0.09$    \\
122 < -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.21 \pm 0.11$    \\
123 < +5\%    & +5\%    & -2.5\%  & -2.5\%  & $1.26 \pm 0.12$    \\
116 > nominal & nominal & nominal & nominal & $1.03 \pm 0.10$    \\
117 > +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.13 \pm 0.13$    \\
118 > +5\%    & +5\%    & nominal & nominal & $1.08 \pm 0.12$    \\
119 > nominal & nominal & +2.5\%  & +2.5\%  & $1.07 \pm 0.11$    \\
120 > nominal & +5\%    & nominal & +2.5\%  & $1.09 \pm 0.12$    \\
121 > nominal & -5\%    & nominal & -2.5\%  & $0.98 \pm 0.08$    \\
122 > -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.03 \pm 0.09$    \\
123 > +5\%    & +5\%    & -2.5\%  & -2.5\%  & $1.03 \pm 0.11$    \\
124   \hline
125   \end{tabular}
126   \end{center}
# Line 144 | Line 146 | cut of 50 GeV, the rescaling factor is o
146  
147   \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
148   \begin{center}
149 < $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~}$
149 > $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~} = 1.52$
150   \end{center}
151  
152  
151 Monte Carlo studies give values of $K$ that are typically between 1.5 and 1.6,
152 depending on selection details.  
153   %%%TO BE REPLACED
154   %Given the integrated luminosity of the
155   %present dataset, the determination of $K$ in data is severely statistics
# Line 197 | Line 197 | The results are summarized in Table~\ref
197   \begin{table}[htb]
198   \begin{center}
199   \caption{\label{tab:victorybad}
200 < {\bf \color{red} Need to either update this with 38X MC  or remove it }
200 > {\bf \color{red} Should we either update this with 38X MC  or remove it?? }
201   Test of the data driven method in Monte Carlo
202   under different assumptions.  See text for details.}
203   \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
# Line 220 | Line 220 | under different assumptions.  See text f
220   \begin{table}[htb]
221   \begin{center}
222   \caption{\label{tab:victorysyst}
223 < {Summary of uncertainties in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton.
223 > Summary of uncertainties in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton.
224   In the first table, `up' and `down' refer to shifting the hadronic energy scale up and down by 5\%. In the second table, the quoted value
225   refers to the amount of additional smearing of the MET, as discussed in the text. In the third table, the normalization of all backgrounds
226   other than $t\bar{t} \to$~dilepton is varied.
227 < {\bf \color{ref} Should I remove `observed' and `predicted' and show only the ratio? }}
227 > {\bf \color{red} Should I remove `observed' and `predicted' and show only the ratio? }}
228  
229   \begin{tabular}{ lcccc }
230   \hline
# Line 234 | Line 234 | other than $t\bar{t} \to$~dilepton is va
234              up    &  0.92 $ \pm $ 0.11   &  1.53 $ \pm $ 0.12   &  1.66 $ \pm $ 0.23   \\
235            down    &  0.81 $ \pm $ 0.07   &  1.08 $ \pm $ 0.11   &  1.32 $ \pm $ 0.17   \\
236   \hline
237
238 \hline
237     MET smearing   &      Predicted       &       Observed        &       Obs/pred      \\
238   \hline
239          nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
# Line 245 | Line 243 | other than $t\bar{t} \to$~dilepton is va
243             40\%   &  0.85 $ \pm $ 0.07   &  1.37 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
244             50\%   &  1.08 $ \pm $ 0.18   &  1.36 $ \pm $ 0.11   &  1.26 $ \pm $ 0.24   \\
245   \hline
248
249 \hline
246    non-$t\bar{t} \to$~dilepton scale factor   &          Predicted   &           Observed   &           Obs/pred   \\
247   \hline
248     ttdil only                                &  0.77 $ \pm $ 0.07   &  1.05 $ \pm $ 0.06   &  1.36 $ \pm $ 0.14   \\
# Line 281 | Line 277 | not include effects of spin correlations
277   We have studied this effect at the generator level using Alpgen.  We find
278   that the bias is at the few percent level.
279  
280 < Based on the results of Table~\ref{tab:victorybad}, we conclude that the
280 > Based on the results of Table~\ref{tab:victorysyst}, we conclude that the
281   naive data-driven background estimate based on $P_T{(\ell\ell)}$ needs to
282 < be corrected by a factor of $ K_C = 1.4 \pm 0.2(stat)$.
282 > be corrected by a factor of $ K_C = 1.4 \pm 0.2({\rm stat})$.
283  
284 < The 2 dominant sources of systematic uncertainty in $K_C$ are due to non-$t\bar{t} \to$~dilepton backgrounds,
285 < and the MET scale and resolution uncertainties. The impact of non-$t\bar{t}$-dilepton background is assessed
286 < by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton, as shown in Table~\ref{table_kc}.
287 < The systematic is assessed as the larger of the differences between the nominal $K_C$ value and the values
284 > The dominant sources of systematic uncertainty in $K_C$ are due to non-$t\bar{t} \to$~dilepton backgrounds,
285 > and the MET scale and resolution uncertainties, as summarized in Table~\ref{tab:victorysyst}.
286 > The impact of non-$t\bar{t}$-dilepton background is assessed
287 > by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton.
288 > The uncertainty is assessed as the larger of the differences between the nominal $K_C$ value and the values
289   obtained using only $t\bar{t} \to$~dilepton MC and obtained by doubling the non $t\bar{t} \to$~dilepton component,
290   giving an uncertainty of $0.04$.
291  
292   The uncertainty in $K_C$ due to the MET scale uncertainty is assessed by varying the hadronic energy scale using
293 < the same method as in~\ref{} and checking how much $K_C$ changes, as summarized in Table~\ref{tab:victorysyst}.
294 < This gives an uncertainty of 0.3. We also assess the impact of the MET resolution uncertainty on $K_C$ by applying
295 < a random smearing to the MET. For each event, we determine the expected MET resolution based on the sumJetPt, and
296 < smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%. The results show that
300 < $K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty.
293 > the same method as in~\cite{ref:top}, giving an uncertainty of 0.3. We also assess the impact of the MET resolution
294 > uncertainty on $K_C$ by applying a random smearing to the MET. For each event, we determine the expected MET resolution
295 > based on the sumJetPt, and smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%.
296 > The results show that $K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty.
297  
298   Incorporating all the statistical and systematic uncertainties we find $K_C = 1.4 \pm 0.4$.
299  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines