ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.6 by claudioc, Wed Nov 3 23:05:16 2010 UTC vs.
Revision 1.14 by benhoob, Thu Nov 11 11:46:07 2010 UTC

# Line 2 | Line 2
2   \label{sec:datadriven}
3   We have developed two data-driven methods to
4   estimate the background in the signal region.
5 < The first one explouts the fact that
5 > The first one exploits the fact that
6   \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
7   uncorrelated for the $t\bar{t}$ background
8   (Section~\ref{sec:abcd});  the second one
# Line 12 | Line 12 | nearly the same as the $P_T$ of the pair
12   from $W$-decays, which is reconstructed as \met in the
13   detector.
14  
15 < In 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
15 > In 35 pb$^{-1}$ we expect 1.4 SM event in
16   the signal region.  The expectations from the LMO
17 < and LM1 SUSY benchmark points are 5.6 and
18 < 2.2 events respectively.
17 > and LM1 SUSY benchmark points are 6.5 and
18 > 2.6 events respectively.
19   %{\color{red} I took these
20   %numbers from the twiki, rescaling from 11.06 to 30/pb.
21   %They seem too large...are they really right?}
# Line 53 | Line 53 | Our choice of ABCD regions is shown in F
53   The signal region is region D.  The expected number of events
54   in the four regions for the SM Monte Carlo, as well as the BG
55   prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
56 < luminosity of 30 pb$^{-1}$.  The ABCD method is accurate
57 < to about 10\%. {\color{red} Avi wants some statement about stability
58 < wrt changes in regions.  I am not sure that we have done it and
59 < I am not sure it is necessary (Claudio).}
56 > luminosity of 35 pb$^{-1}$.  The ABCD method is accurate
57 > to about 20\%.
58 > %{\color{red} Avi wants some statement about stability
59 > %wrt changes in regions.  I am not sure that we have done it and
60 > %I am not sure it is necessary (Claudio).}
61  
62   \begin{table}[htb]
63   \begin{center}
64   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
65 < 30 pb$^{-1}$ in the ABCD regions.}
66 < \begin{tabular}{|l|c|c|c|c||c|}
65 > 35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
66 > the signal region given by A$\times$C/B. Here 'SM other' is the sum
67 > of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
68 > $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
69 > \begin{tabular}{l||c|c|c|c||c}
70 > \hline
71 >         sample                          &              A   &              B   &              C   &              D   &    A$\times$C/B \\
72 > \hline
73 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
74 >   $Z^0$ + jets                          &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
75 >       SM other                          &           0.65   &           2.31   &           0.17   &           0.14   &           0.05  \\
76 > \hline
77 >    total SM MC                          &           8.61   &          36.54   &           5.05   &           1.41   &           1.19  \\
78   \hline
67 Sample   & A   & B    & C   & D   & AC/D \\ \hline
68 ttdil    & 6.9 & 28.6 & 4.2 & 1.0 & 1.0  \\
69 Zjets    & 0.0 & 1.3  & 0.1 & 0.1 & 0.0  \\
70 Other SM & 0.5 & 2.0  & 0.1 & 0.1 & 0.0  \\ \hline
71 total MC & 7.4 & 31.9 & 4.4 & 1.2 & 1.0 \\ \hline
79   \end{tabular}
80   \end{center}
81   \end{table}
# Line 98 | Line 105 | $ K = \frac{\int_0^{\infty} {\cal N}(\pt
105  
106  
107   Monte Carlo studies give values of $K$ that are typically between 1.5 and 1.6,
108 < depending on selection details.
108 > depending on selection details.  
109 > %%%TO BE REPLACED
110 > %Given the integrated luminosity of the
111 > %present dataset, the determination of $K$ in data is severely statistics
112 > %limited.  Thus, we take $K$ from $t\bar{t}$ Monte Carlo as
113 >
114 > %\begin{center}
115 > %$ K_{MC} = \frac{\int_0^{\infty} {\cal N}(\met)~~d\met~}{\int_{50}^{\infty} {\cal N}(\met)~~d\met~}$
116 > %\end{center}
117 >
118 > %\noindent {\color{red} For the 11 pb result we have used $K$ from data.}
119  
120   There are several effects that spoil the correspondance between \met and
121   $P_T(\ell\ell)$:
# Line 170 | Line 187 | is statistically not well quantified).
187   An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
188   not include effects of spin correlations between the two top quarks.  
189   We have studied this effect at the generator level using Alpgen.  We find
190 < that the bias is a the few percent level.
190 > that the bias is at the few percent level.
191 >
192 > %%%TO BE REPLACED
193 > %Based on the results of Table~\ref{tab:victorybad}, we conclude that the
194 > %naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
195 > %be corrected by a factor of {\color{red} $ K_{\rm{fudge}} =1.2 \pm 0.3$
196 > %(We still need to settle on thie exact value of this.
197 > %For the 11 pb analysis it is taken as =1.)} . The quoted
198 > %uncertainty is based on the stability of the Monte Carlo tests under
199 > %variations of event selections, choices of \met algorithm, etc.
200 > %For example, we find that observed/predicted changes by roughly 0.1
201 > %for each 1.5\% change in the average \met response.  
202  
203   Based on the results of Table~\ref{tab:victorybad}, we conclude that the
204   naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
205 < be corrected by a factor of {\color{red} $1.2 \pm 0.3$ (We need to talk
206 < about this)} . The quoted
207 < uncertainty is based on the stability of the Monte Carlo tests under
205 > be corrected by a factor of $ K_C = X \pm Y$.
206 > The value of this correction factor as well as the systematic uncertainty
207 > will be assessed using 38X ttbar madgraph MC. In the following we use
208 > $K_C = 1$ for simplicity. Based on previous MC studies we foresee a correction
209 > factor of $K_C \approx 1.2 - 1.5$, and we will assess an uncertainty
210 > based on the stability of the Monte Carlo tests under
211   variations of event selections, choices of \met algorithm, etc.
212 + For example, we find that observed/predicted changes by roughly 0.1
213 + for each 1.5\% change in the average \met response.
214  
215  
216  
# Line 203 | Line 236 | in the ABCD method but not in the $P_T(\
236  
237   The LM points are benchmarks for SUSY analyses at CMS.  The effects
238   of signal contaminations for a couple such points are summarized
239 < in Table~\ref{tab:sigcontABCD} and~\ref{tab:sigcontPT}.
207 < Signal contamination is definitely an important
239 > in Table~\ref{tab:sigcont}. Signal contamination is definitely an important
240   effect for these two LM points, but it does not totally hide the
241   presence of the signal.
242  
243  
244   \begin{table}[htb]
245   \begin{center}
246 < \caption{\label{tab:sigcontABCD} Effects of signal contamination
247 < for the background predictions of the ABCD method including LM0 or
248 < LM1.  Results
249 < are normalized to 30 pb$^{-1}$.}
250 < \begin{tabular}{|c||c|c||c|c|}
219 < \hline
220 < SM         & LM0         & BG Prediction & LM1          & BG Prediction \\
221 < Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
222 < 1.2        & 5.6         & 3.7           & 2.2          & 1.3 \\
246 > \caption{\label{tab:sigcont} Effects of signal contamination
247 > for the two data-driven background estimates. The three columns give
248 > the expected yield in the signal region and the background estimates
249 > using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.}
250 > \begin{tabular}{lccc}
251   \hline
252 < \end{tabular}
253 < \end{center}
254 < \end{table}
255 <
256 < \begin{table}[htb]
229 < \begin{center}
230 < \caption{\label{tab:sigcontPT} Effects of signal contamination
231 < for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
232 < LM1.  Results
233 < are normalized to 30 pb$^{-1}$. {\color{red} Does this BG prediction include
234 < the fudge factor of 1.4 or watever because the method is not perfect.}}
235 < \begin{tabular}{|c||c|c||c|c|}
236 < \hline
237 < SM         & LM0         & BG Prediction & LM1          & BG Prediction \\
238 < Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
239 < 1.2        & 5.6         & 2.2           & 2.2          & 1.5 \\
252 >            &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
253 > \hline
254 > SM only     &      1.41       &      1.19    &             0.96  \\
255 > SM + LM0    &      7.88       &      4.24    &             2.28  \\
256 > SM + LM1    &      3.98       &      1.53    &             1.44  \\
257   \hline
258   \end{tabular}
259   \end{center}
260   \end{table}
261  
262 +
263 +
264 + %\begin{table}[htb]
265 + %\begin{center}
266 + %\caption{\label{tab:sigcontABCD} Effects of signal contamination
267 + %for the background predictions of the ABCD method including LM0 or
268 + %LM1.  Results
269 + %are normalized to 30 pb$^{-1}$.}
270 + %\begin{tabular}{|c|c||c|c||c|c|}
271 + %\hline
272 + %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
273 + %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
274 + %1.2        & 1.0            & 6.8          & 3.7           & 3.4          & 1.3 \\
275 + %\hline
276 + %\end{tabular}
277 + %\end{center}
278 + %\end{table}
279 +
280 + %\begin{table}[htb]
281 + %\begin{center}
282 + %\caption{\label{tab:sigcontPT} Effects of signal contamination
283 + %for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
284 + %LM1.  Results
285 + %are normalized to 30 pb$^{-1}$.}
286 + %\begin{tabular}{|c|c||c|c||c|c|}
287 + %\hline
288 + %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
289 + %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
290 + %1.2        & 1.0            & 6.8          & 2.2           & 3.4          & 1.5 \\
291 + %\hline
292 + %\end{tabular}
293 + %\end{center}
294 + %\end{table}
295 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines