ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.6 by claudioc, Wed Nov 3 23:05:16 2010 UTC vs.
Revision 1.19 by benhoob, Sat Nov 13 06:42:40 2010 UTC

# Line 2 | Line 2
2   \label{sec:datadriven}
3   We have developed two data-driven methods to
4   estimate the background in the signal region.
5 < The first one explouts the fact that
5 > The first one exploits the fact that
6   \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
7   uncorrelated for the $t\bar{t}$ background
8   (Section~\ref{sec:abcd});  the second one
# Line 12 | Line 12 | nearly the same as the $P_T$ of the pair
12   from $W$-decays, which is reconstructed as \met in the
13   detector.
14  
15 < In 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
16 < the signal region.  The expectations from the LMO
17 < and LM1 SUSY benchmark points are 5.6 and
18 < 2.2 events respectively.
15 >
16   %{\color{red} I took these
17   %numbers from the twiki, rescaling from 11.06 to 30/pb.
18   %They seem too large...are they really right?}
# Line 25 | Line 22 | and LM1 SUSY benchmark points are 5.6 an
22   \label{sec:abcd}
23  
24   We find that in $t\bar{t}$ events \met and
25 < \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated.
26 < This is demonstrated in Figure~\ref{fig:uncor}.
25 > \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 > as demonstrated in Figure~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
# Line 53 | Line 50 | Our choice of ABCD regions is shown in F
50   The signal region is region D.  The expected number of events
51   in the four regions for the SM Monte Carlo, as well as the BG
52   prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
53 < luminosity of 30 pb$^{-1}$.  The ABCD method is accurate
54 < to about 10\%. {\color{red} Avi wants some statement about stability
55 < wrt changes in regions.  I am not sure that we have done it and
56 < I am not sure it is necessary (Claudio).}
53 > luminosity of 35 pb$^{-1}$.  The ABCD method is accurate
54 > to about 20\%.
55 > %{\color{red} Avi wants some statement about stability
56 > %wrt changes in regions.  I am not sure that we have done it and
57 > %I am not sure it is necessary (Claudio).}
58  
59   \begin{table}[htb]
60   \begin{center}
61   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
62 < 30 pb$^{-1}$ in the ABCD regions.}
63 < \begin{tabular}{|l|c|c|c|c||c|}
62 > 35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
63 > the signal region given by A $\times$ C / B. Here `SM other' is the sum
64 > of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
65 > $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
66 > \begin{tabular}{lccccc}
67 > \hline
68 >         sample                          &              A   &              B   &              C   &              D   &    A $\times$ C / B \\
69 > \hline
70 >
71 >
72 > \hline
73 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
74 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &           0.03   &           1.47   &           0.10   &           0.10   &           0.00  \\
75 >       SM other                          &           0.65   &           2.31   &           0.17   &           0.14   &           0.05  \\
76 > \hline
77 >    total SM MC                          &           8.63   &          36.85   &           5.07   &           1.43   &           1.19  \\
78   \hline
67 Sample   & A   & B    & C   & D   & AC/D \\ \hline
68 ttdil    & 6.9 & 28.6 & 4.2 & 1.0 & 1.0  \\
69 Zjets    & 0.0 & 1.3  & 0.1 & 0.1 & 0.0  \\
70 Other SM & 0.5 & 2.0  & 0.1 & 0.1 & 0.0  \\ \hline
71 total MC & 7.4 & 31.9 & 4.4 & 1.2 & 1.0 \\ \hline
79   \end{tabular}
80   \end{center}
81   \end{table}
# Line 89 | Line 96 | In practice one has to rescale the resul
96   to account for the fact that any dilepton selection must include a
97   moderate \met cut in order to reduce Drell Yan backgrounds.  This
98   is discussed in Section 5.3 of Reference~\cite{ref:ourvictory}; for a \met
99 < cut of 50 GeV, the rescaling factor is obtained from the data as
99 > cut of 50 GeV, the rescaling factor is obtained from the MC as
100  
101   \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
102   \begin{center}
# Line 98 | Line 105 | $ K = \frac{\int_0^{\infty} {\cal N}(\pt
105  
106  
107   Monte Carlo studies give values of $K$ that are typically between 1.5 and 1.6,
108 < depending on selection details.
108 > depending on selection details.  
109 > %%%TO BE REPLACED
110 > %Given the integrated luminosity of the
111 > %present dataset, the determination of $K$ in data is severely statistics
112 > %limited.  Thus, we take $K$ from $t\bar{t}$ Monte Carlo as
113 >
114 > %\begin{center}
115 > %$ K_{MC} = \frac{\int_0^{\infty} {\cal N}(\met)~~d\met~}{\int_{50}^{\infty} {\cal N}(\met)~~d\met~}$
116 > %\end{center}
117 >
118 > %\noindent {\color{red} For the 11 pb result we have used $K$ from data.}
119  
120   There are several effects that spoil the correspondance between \met and
121   $P_T(\ell\ell)$:
# Line 111 | Line 128 | leptons that have no simple correspondan
128   \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
129   neutrinos which is only partially compensated by the $K$ factor above.
130   \item The \met resolution is much worse than the dilepton $P_T$ resolution.
131 < When convoluted with a falling spectrum in the tails of \met, this result
131 > When convoluted with a falling spectrum in the tails of \met, this results
132   in a harder spectrum for \met than the original $P_T(\nu\nu)$.
133   \item The \met response in CMS is not exactly 1.  This causes a distortion
134   in the \met distribution that is not present in the $P_T(\ell\ell)$ distribution.
# Line 122 | Line 139 | of $P_T(\ell\ell)$ and $P_T(\nu\nu)$ do
139   sources.  These events can affect the background prediction.  Particularly
140   dangerous are high $P_T$ Drell Yan events that barely pass the \met$>$ 50
141   GeV selection.  They will tend to push the data-driven background prediction up.
142 + Therefore we estimate the number of DY events entering the background prediction
143 + using the $R_{out/in}$ method as described in Sec.~\ref{sec:othBG}.
144   \end{itemize}
145  
146   We have studied these effects in SM Monte Carlo, using a mixture of generator and
# Line 144 | Line 163 | under different assumptions.  See text f
163   4&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & Y          & 1.55  \\
164   5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
165   6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
166 < 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.18  \\
166 > 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.38  \\
167 > %%%NOTE: updated value 1.18 -> 1.46 since 2/3 DY events have been removed by updated analysis selections,
168 > %%%dpt/pt cut and general lepton veto
169   \hline
170   \end{tabular}
171   \end{center}
# Line 162 | Line 183 | Going from GEN to RECOSIM, the change in
183   % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
184   %for each 1.5\% change in \met response.}.  
185   Finally, contamination from non $t\bar{t}$
186 < events can have a significant impact on the BG prediction.  The changes between
187 < lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
188 < Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
189 < is statistically not well quantified).
186 > events can have a significant impact on the BG prediction.  
187 > %The changes between
188 > %lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
189 > %Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
190 > %is statistically not well quantified).
191  
192   An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
193   not include effects of spin correlations between the two top quarks.  
194   We have studied this effect at the generator level using Alpgen.  We find
195 < that the bias is a the few percent level.
195 > that the bias is at the few percent level.
196 >
197 > %%%TO BE REPLACED
198 > %Based on the results of Table~\ref{tab:victorybad}, we conclude that the
199 > %naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
200 > %be corrected by a factor of {\color{red} $ K_{\rm{fudge}} =1.2 \pm 0.3$
201 > %(We still need to settle on thie exact value of this.
202 > %For the 11 pb analysis it is taken as =1.)} . The quoted
203 > %uncertainty is based on the stability of the Monte Carlo tests under
204 > %variations of event selections, choices of \met algorithm, etc.
205 > %For example, we find that observed/predicted changes by roughly 0.1
206 > %for each 1.5\% change in the average \met response.  
207  
208   Based on the results of Table~\ref{tab:victorybad}, we conclude that the
209   naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
210 < be corrected by a factor of {\color{red} $1.2 \pm 0.3$ (We need to talk
211 < about this)} . The quoted
212 < uncertainty is based on the stability of the Monte Carlo tests under
210 > be corrected by a factor of $ K_C = X \pm Y$.
211 > The value of this correction factor as well as the systematic uncertainty
212 > will be assessed using 38X ttbar madgraph MC. In the following we use
213 > $K_C = 1$ for simplicity. Based on previous MC studies we foresee a correction
214 > factor of $K_C \approx 1.2 - 1.5$, and we will assess an uncertainty
215 > based on the stability of the Monte Carlo tests under
216   variations of event selections, choices of \met algorithm, etc.
217 + For example, we find that observed/predicted changes by roughly 0.1
218 + for each 1.5\% change in the average \met response.
219  
220  
221  
# Line 203 | Line 241 | in the ABCD method but not in the $P_T(\
241  
242   The LM points are benchmarks for SUSY analyses at CMS.  The effects
243   of signal contaminations for a couple such points are summarized
244 < in Table~\ref{tab:sigcontABCD} and~\ref{tab:sigcontPT}.
207 < Signal contamination is definitely an important
244 > in Table~\ref{tab:sigcont}. Signal contamination is definitely an important
245   effect for these two LM points, but it does not totally hide the
246   presence of the signal.
247  
248  
249   \begin{table}[htb]
250   \begin{center}
251 < \caption{\label{tab:sigcontABCD} Effects of signal contamination
252 < for the background predictions of the ABCD method including LM0 or
253 < LM1.  Results
254 < are normalized to 30 pb$^{-1}$.}
255 < \begin{tabular}{|c||c|c||c|c|}
256 < \hline
220 < SM         & LM0         & BG Prediction & LM1          & BG Prediction \\
221 < Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
222 < 1.2        & 5.6         & 3.7           & 2.2          & 1.3 \\
251 > \caption{\label{tab:sigcont} Effects of signal contamination
252 > for the two data-driven background estimates. The three columns give
253 > the expected yield in the signal region and the background estimates
254 > using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.
255 > {\color{red} \bf UPDATE RESULTS WITH DY SAMPLES.}}
256 > \begin{tabular}{lccc}
257   \hline
258 < \end{tabular}
259 < \end{center}
260 < \end{table}
261 <
262 < \begin{table}[htb]
229 < \begin{center}
230 < \caption{\label{tab:sigcontPT} Effects of signal contamination
231 < for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
232 < LM1.  Results
233 < are normalized to 30 pb$^{-1}$. {\color{red} Does this BG prediction include
234 < the fudge factor of 1.4 or watever because the method is not perfect.}}
235 < \begin{tabular}{|c||c|c||c|c|}
236 < \hline
237 < SM         & LM0         & BG Prediction & LM1          & BG Prediction \\
238 < Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
239 < 1.2        & 5.6         & 2.2           & 2.2          & 1.5 \\
258 >            &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
259 > \hline
260 > SM only     &      1.43       &      1.19    &             1.03  \\
261 > SM + LM0    &      7.90       &      4.23    &             2.35  \\
262 > SM + LM1    &      4.00       &      1.53    &             1.51  \\
263   \hline
264   \end{tabular}
265   \end{center}
266   \end{table}
267  
268 +
269 +
270 + %\begin{table}[htb]
271 + %\begin{center}
272 + %\caption{\label{tab:sigcontABCD} Effects of signal contamination
273 + %for the background predictions of the ABCD method including LM0 or
274 + %LM1.  Results
275 + %are normalized to 30 pb$^{-1}$.}
276 + %\begin{tabular}{|c|c||c|c||c|c|}
277 + %\hline
278 + %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
279 + %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
280 + %1.2        & 1.0            & 6.8          & 3.7           & 3.4          & 1.3 \\
281 + %\hline
282 + %\end{tabular}
283 + %\end{center}
284 + %\end{table}
285 +
286 + %\begin{table}[htb]
287 + %\begin{center}
288 + %\caption{\label{tab:sigcontPT} Effects of signal contamination
289 + %for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
290 + %LM1.  Results
291 + %are normalized to 30 pb$^{-1}$.}
292 + %\begin{tabular}{|c|c||c|c||c|c|}
293 + %\hline
294 + %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
295 + %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
296 + %1.2        & 1.0            & 6.8          & 2.2           & 3.4          & 1.5 \\
297 + %\hline
298 + %\end{tabular}
299 + %\end{center}
300 + %\end{table}
301 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines