ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.1 by claudioc, Thu Oct 28 05:28:08 2010 UTC vs.
Revision 1.21 by claudioc, Sun Nov 14 19:33:11 2010 UTC

# Line 2 | Line 2
2   \label{sec:datadriven}
3   We have developed two data-driven methods to
4   estimate the background in the signal region.
5 < The first one explouts the fact that
5 > The first one exploits the fact that
6   \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
7   uncorrelated for the $t\bar{t}$ background
8   (Section~\ref{sec:abcd});  the second one
# Line 12 | Line 12 | nearly the same as the $P_T$ of the pair
12   from $W$-decays, which is reconstructed as \met in the
13   detector.
14  
15 < in 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
16 < the signal region.  The expectations from the LMO
17 < and LM1 SUSY benchmark points are {\color{red} XX} and
18 < {\color{red} XX} events respectively.
15 >
16 > %{\color{red} I took these
17 > %numbers from the twiki, rescaling from 11.06 to 30/pb.
18 > %They seem too large...are they really right?}
19  
20  
21   \subsection{ABCD method}
22   \label{sec:abcd}
23  
24   We find that in $t\bar{t}$ events \met and
25 < \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated.
26 < This is demonstrated in Figure~\ref{fig:uncor}.
25 > \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 > as demonstrated in Figure~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
30 < \begin{figure}[htb]
30 > \begin{figure}[bht]
31   \begin{center}
32   \includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
33   \caption{\label{fig:uncor}\protect Distributions of SumJetPt
# Line 36 | Line 36 | MET$/\sqrt{\rm SumJetPt}$.}
36   \end{center}
37   \end{figure}
38  
39 < \begin{figure}[htb]
39 > \begin{figure}[tb]
40   \begin{center}
41 < \includegraphics[width=0.75\linewidth]{abcdMC.jpg}
41 > \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
42   \caption{\label{fig:abcdMC}\protect Distributions of SumJetPt
43   vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo.  Here we also
44 < show our choice of ABCD regions. {\color{red} We need a better
45 < picture with the letters A-B-C-D and with the numerical values
46 < of the boundaries clearly indicated.}}
44 > show our choice of ABCD regions.}
45   \end{center}
46   \end{figure}
47  
# Line 51 | Line 49 | of the boundaries clearly indicated.}}
49   Our choice of ABCD regions is shown in Figure~\ref{fig:abcdMC}.
50   The signal region is region D.  The expected number of events
51   in the four regions for the SM Monte Carlo, as well as the BG
52 < prediction AC/B is given in Table~\ref{tab:abcdMC} for an integrated
53 < luminosity of 30 pb$^{-1}$.  The ABCD method is accurate
54 < to about 10\%.
52 > prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
53 > luminosity of 35 pb$^{-1}$.  The ABCD method is accurate
54 > to about 20\%.
55 > %{\color{red} Avi wants some statement about stability
56 > %wrt changes in regions.  I am not sure that we have done it and
57 > %I am not sure it is necessary (Claudio).}
58  
59 < \begin{table}[htb]
59 > \begin{table}[ht]
60   \begin{center}
61   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
62 < 30 pb$^{-1}$ in the ABCD regions.}
63 < \begin{tabular}{|l|c|c|c|c||c|}
62 > 35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
63 > the signal region given by A $\times$ C / B. Here `SM other' is the sum
64 > of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
65 > $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
66 > \begin{tabular}{lccccc}
67 > \hline
68 >         sample                          &              A   &              B   &              C   &              D   &    A $\times$ C / B \\
69 > \hline
70 >
71 >
72 > \hline
73 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
74 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &           0.03   &           1.47   &           0.10   &           0.10   &           0.00  \\
75 >       SM other                          &           0.65   &           2.31   &           0.17   &           0.14   &           0.05  \\
76 > \hline
77 >    total SM MC                          &           8.63   &          36.85   &           5.07   &           1.43   &           1.19  \\
78 > \hline
79 > \end{tabular}
80 > \end{center}
81 > \end{table}
82 >
83 > \subsection{Dilepton $P_T$ method}
84 > \label{sec:victory}
85 > This method is based on a suggestion by V. Pavlunin\cite{ref:victory},
86 > and was investigated by our group in 2009\cite{ref:ourvictory}.
87 > The idea is that in dilepton $t\bar{t}$ events the lepton and neutrinos
88 > from $W$ decays have the same $P_T$ spectrum (modulo $W$ polarization
89 > effects).  One can then use the observed
90 > $P_T(\ell\ell)$ distribution to model the sum of neutrino $P_T$'s which
91 > is identified with the \met.
92 >
93 > Then, in order to predict the $t\bar{t} \to$ dilepton contribution to a
94 > selection with \met$+$X, one applies a cut on $P_T(\ell\ell)+$X instead.
95 > In practice one has to rescale the result of the $P_T(\ell\ell)+$X selection
96 > to account for the fact that any dilepton selection must include a
97 > moderate \met cut in order to reduce Drell Yan backgrounds.  This
98 > is discussed in Section 5.3 of Reference~\cite{ref:ourvictory}; for a \met
99 > cut of 50 GeV, the rescaling factor is obtained from the MC as
100 >
101 > \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
102 > \begin{center}
103 > $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~}$
104 > \end{center}
105 >
106 >
107 > Monte Carlo studies give values of $K$ that are typically between 1.5 and 1.6,
108 > depending on selection details.  
109 > %%%TO BE REPLACED
110 > %Given the integrated luminosity of the
111 > %present dataset, the determination of $K$ in data is severely statistics
112 > %limited.  Thus, we take $K$ from $t\bar{t}$ Monte Carlo as
113 >
114 > %\begin{center}
115 > %$ K_{MC} = \frac{\int_0^{\infty} {\cal N}(\met)~~d\met~}{\int_{50}^{\infty} {\cal N}(\met)~~d\met~}$
116 > %\end{center}
117 >
118 > %\noindent {\color{red} For the 11 pb result we have used $K$ from data.}
119 >
120 > There are several effects that spoil the correspondance between \met and
121 > $P_T(\ell\ell)$:
122 > \begin{itemize}
123 > \item $Ws$ in top events are polarized.  Neutrinos are emitted preferentially
124 > forward in the $W$ rest frame, thus the $P_T(\nu\nu)$ distribution is harder
125 > than the $P_T(\ell\ell)$ distribution for top dilepton events.
126 > \item The lepton selections results in $P_T$ and $\eta$ cuts on the individual
127 > leptons that have no simple correspondance to the neutrino requirements.
128 > \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
129 > neutrinos which is only partially compensated by the $K$ factor above.
130 > \item The \met resolution is much worse than the dilepton $P_T$ resolution.
131 > When convoluted with a falling spectrum in the tails of \met, this results
132 > in a harder spectrum for \met than the original $P_T(\nu\nu)$.
133 > \item The \met response in CMS is not exactly 1.  This causes a distortion
134 > in the \met distribution that is not present in the $P_T(\ell\ell)$ distribution.
135 > \item The $t\bar{t} \to$ dilepton signal includes contributions from
136 > $W \to \tau \to \ell$.  For these events the arguments about the equivalence
137 > of $P_T(\ell\ell)$ and $P_T(\nu\nu)$ do not apply.
138 > \item A dilepton selection will include SM events from non $t\bar{t}$
139 > sources.  These events can affect the background prediction.  Particularly
140 > dangerous are high $P_T$ Drell Yan events that barely pass the \met$>$ 50
141 > GeV selection.  They will tend to push the data-driven background prediction up.
142 > Therefore we estimate the number of DY events entering the background prediction
143 > using the $R_{out/in}$ method as described in Sec.~\ref{sec:othBG}.
144 > \end{itemize}
145 >
146 > We have studied these effects in SM Monte Carlo, using a mixture of generator and
147 > reconstruction level studies, putting the various effects in one at a time.
148 > For each configuration, we apply the data-driven method and report as figure
149 > of merit the ratio of observed and predicted events in the signal region.
150 > The results are summarized in Table~\ref{tab:victorybad}.
151 >
152 > \begin{table}[htb]
153 > \begin{center}
154 > \caption{\label{tab:victorybad} Test of the data driven method in Monte Carlo
155 > under different assumptions.  See text for details.}
156 > \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
157 > \hline
158 > & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & Z veto & \met $>$ 50& obs/pred \\
159 > & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &  \\ \hline
160 > 1&Y                        &     N          &   N      &  GEN    &   N             &   N    & N          & 1.90  \\
161 > 2&Y                        &     N          &   N      &  GEN    &   Y             &   N    & N          & 1.64  \\
162 > 3&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & N          & 1.59  \\
163 > 4&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & Y          & 1.55  \\
164 > 5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
165 > 6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
166 > 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.38  \\
167 > %%%NOTE: updated value 1.18 -> 1.46 since 2/3 DY events have been removed by updated analysis selections,
168 > %%%dpt/pt cut and general lepton veto
169 > \hline
170 > \end{tabular}
171 > \end{center}
172 > \end{table}
173 >
174 >
175 > The largest discrepancy between prediction and observation occurs on the first
176 > line of Table~\ref{tab:victorybad}, {\em i.e.}, at the generator level with no
177 > cuts.  We have verified that this effect is due to the polarization of
178 > the $W$ (we remove the polarization by reweighting the events and we get
179 > good agreement between prediction and observation).  The kinematical
180 > requirements (lines 2,3,4) compensate somewhat for the effect of W polarization.
181 > Going from GEN to RECOSIM, the change in observed/predicted is small.  
182 > % We have tracked this down to the fact that tcMET underestimates the true \met
183 > % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
184 > %for each 1.5\% change in \met response.}.  
185 > Finally, contamination from non $t\bar{t}$
186 > events can have a significant impact on the BG prediction.  
187 > %The changes between
188 > %lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
189 > %Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
190 > %is statistically not well quantified).
191 >
192 > An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
193 > not include effects of spin correlations between the two top quarks.  
194 > We have studied this effect at the generator level using Alpgen.  We find
195 > that the bias is at the few percent level.
196 >
197 > %%%TO BE REPLACED
198 > %Based on the results of Table~\ref{tab:victorybad}, we conclude that the
199 > %naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
200 > %be corrected by a factor of {\color{red} $ K_{\rm{fudge}} =1.2 \pm 0.3$
201 > %(We still need to settle on thie exact value of this.
202 > %For the 11 pb analysis it is taken as =1.)} . The quoted
203 > %uncertainty is based on the stability of the Monte Carlo tests under
204 > %variations of event selections, choices of \met algorithm, etc.
205 > %For example, we find that observed/predicted changes by roughly 0.1
206 > %for each 1.5\% change in the average \met response.  
207 >
208 > Based on the results of Table~\ref{tab:victorybad}, we conclude that the
209 > naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
210 > be corrected by a factor of $ K_C = X \pm Y$.
211 > The value of this correction factor as well as the systematic uncertainty
212 > will be assessed using 38X ttbar madgraph MC. In the following we use
213 > $K_C = 1$ for simplicity. Based on previous MC studies we foresee a correction
214 > factor of $K_C \approx 1.2 - 1.5$, and we will assess an uncertainty
215 > based on the stability of the Monte Carlo tests under
216 > variations of event selections, choices of \met algorithm, etc.
217 > For example, we find that observed/predicted changes by roughly 0.1
218 > for each 1.5\% change in the average \met response.
219 >
220 >
221 >
222 > \subsection{Signal Contamination}
223 > \label{sec:sigcont}
224 >
225 > All data-driven methods are in principle subject to signal contaminations
226 > in the control regions, and the methods described in
227 > Sections~\ref{sec:abcd} and~\ref{sec:victory} are not exceptions.
228 > Signal contamination tends to dilute the significance of a signal
229 > present in the data by inflating the background prediction.
230 >
231 > It is hard to quantify how important these effects are because we
232 > do not know what signal may be hiding in the data.  Having two
233 > independent methods (in addition to Monte Carlo ``dead-reckoning'')
234 > adds redundancy because signal contamination can have different effects
235 > in the different control regions for the two methods.
236 > For example, in the extreme case of a
237 > new physics signal
238 > with $P_T(\ell \ell) = \met$, an excess of events would be seen
239 > in the ABCD method but not in the $P_T(\ell \ell)$ method.
240 >
241 >
242 > The LM points are benchmarks for SUSY analyses at CMS.  The effects
243 > of signal contaminations for a couple such points are summarized
244 > in Table~\ref{tab:sigcont}. Signal contamination is definitely an important
245 > effect for these two LM points, but it does not totally hide the
246 > presence of the signal.
247 >
248 >
249 > \begin{table}[htb]
250 > \begin{center}
251 > \caption{\label{tab:sigcont} Effects of signal contamination
252 > for the two data-driven background estimates. The three columns give
253 > the expected yield in the signal region and the background estimates
254 > using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.}
255 > \begin{tabular}{lccc}
256 > \hline
257 >            &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
258 > \hline
259 > SM only     &      1.43       &      1.19    &             1.03  \\
260 > SM + LM0    &      7.90       &      4.23    &             2.35  \\
261 > SM + LM1    &      4.00       &      1.53    &             1.51  \\
262   \hline
64 Sample   & A   & B    & C   & D   & AC/D \\ \hline
65 ttdil    & 6.4 & 28.4 & 4.2 & 1.0 & 0.9  \\
66 Zjets    & 0.0 & 1.3  & 0.2 & 0.0 & 0.0  \\
67 Other SM & 0.6 & 2.1  & 0.2 & 0.1 & 0.0  \\ \hline
68 total MC & 7.0 & 31.8 & 4.5 & 1.1 & 1.0 \\ \hline
263   \end{tabular}
264   \end{center}
265   \end{table}
266  
267  
268  
269 + %\begin{table}[htb]
270 + %\begin{center}
271 + %\caption{\label{tab:sigcontABCD} Effects of signal contamination
272 + %for the background predictions of the ABCD method including LM0 or
273 + %LM1.  Results
274 + %are normalized to 30 pb$^{-1}$.}
275 + %\begin{tabular}{|c|c||c|c||c|c|}
276 + %\hline
277 + %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
278 + %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
279 + %1.2        & 1.0            & 6.8          & 3.7           & 3.4          & 1.3 \\
280 + %\hline
281 + %\end{tabular}
282 + %\end{center}
283 + %\end{table}
284 +
285 + %\begin{table}[htb]
286 + %\begin{center}
287 + %\caption{\label{tab:sigcontPT} Effects of signal contamination
288 + %for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
289 + %LM1.  Results
290 + %are normalized to 30 pb$^{-1}$.}
291 + %\begin{tabular}{|c|c||c|c||c|c|}
292 + %\hline
293 + %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
294 + %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
295 + %1.2        & 1.0            & 6.8          & 2.2           & 3.4          & 1.5 \\
296 + %\hline
297 + %\end{tabular}
298 + %\end{center}
299 + %\end{table}
300  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines