ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.12 by benhoob, Thu Nov 11 11:20:00 2010 UTC vs.
Revision 1.24 by benhoob, Fri Nov 19 16:57:33 2010 UTC

# Line 3 | Line 3
3   We have developed two data-driven methods to
4   estimate the background in the signal region.
5   The first one exploits the fact that
6 < \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
6 > SumJetPt and \met$/\sqrt{\rm SumJetPt}$ are nearly
7   uncorrelated for the $t\bar{t}$ background
8   (Section~\ref{sec:abcd});  the second one
9   is based on the fact that in $t\bar{t}$ the
# Line 12 | Line 12 | nearly the same as the $P_T$ of the pair
12   from $W$-decays, which is reconstructed as \met in the
13   detector.
14  
15 < In 35 pb$^{-1}$ we expect 1.4 SM event in
16 < the signal region.  The expectations from the LMO
17 < and LM1 SUSY benchmark points are 6.5 and
18 < 2.6 events respectively.
15 >
16   %{\color{red} I took these
17   %numbers from the twiki, rescaling from 11.06 to 30/pb.
18   %They seem too large...are they really right?}
# Line 24 | Line 21 | and LM1 SUSY benchmark points are 6.5 an
21   \subsection{ABCD method}
22   \label{sec:abcd}
23  
24 < We find that in $t\bar{t}$ events \met and
25 < \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated.
26 < This is demonstrated in Figure~\ref{fig:uncor}.
24 > We find that in $t\bar{t}$ events SumJetPt and
25 > \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 > as demonstrated in Figure~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
30 < \begin{figure}[tb]
30 > %\begin{figure}[bht]
31 > %\begin{center}
32 > %\includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
33 > %\caption{\label{fig:uncor}\protect Distributions of SumJetPt
34 > %in MC $t\bar{t}$ events for different intervals of
35 > %MET$/\sqrt{\rm SumJetPt}$.}
36 > %\end{center}
37 > %\end{figure}
38 >
39 > \begin{figure}[bht]
40   \begin{center}
41 < \includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
41 > \includegraphics[width=0.75\linewidth]{uncor.png}
42   \caption{\label{fig:uncor}\protect Distributions of SumJetPt
43   in MC $t\bar{t}$ events for different intervals of
44 < MET$/\sqrt{\rm SumJetPt}$.}
44 > MET$/\sqrt{\rm SumJetPt}$. h1, h2, and h3 refer to the MET$/\sqrt{\rm SumJetPt}$
45 > intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively.}
46   \end{center}
47   \end{figure}
48  
49 < \begin{figure}[bt]
49 > \begin{figure}[tb]
50   \begin{center}
51   \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
52 < \caption{\label{fig:abcdMC}\protect Distributions of SumJetPt
53 < vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo.  Here we also
47 < show our choice of ABCD regions.}
52 > \caption{\label{fig:abcdMC}\protect Distributions of MET$/\sqrt{\rm SumJetPt}$ vs.
53 > SumJetPt for SM Monte Carlo.  Here we also show our choice of ABCD regions.}
54   \end{center}
55   \end{figure}
56  
# Line 53 | Line 59 | Our choice of ABCD regions is shown in F
59   The signal region is region D.  The expected number of events
60   in the four regions for the SM Monte Carlo, as well as the BG
61   prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
62 < luminosity of 35 pb$^{-1}$.  The ABCD method is accurate
63 < to about 20\%.
62 > luminosity of 35 pb$^{-1}$.  The ABCD method with chosen boundaries is accurate
63 > to about 20\%. As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties
64 > by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty,
65 > which we take as $\pm$5\% for SumJetPt and $\pm$2.5\% for MET/$\sqrt{\rm SumJetPt}$, since the
66 > uncertainty on this quantity partially cancels due to the fact that it is a ratio of correlated
67 > quantities. Based on these studies we assess a correction factor $k_{ABCD} = 1.2 \pm 0.2$ to the
68 > predicted yield using the ABCD method.
69 >
70 >
71   %{\color{red} Avi wants some statement about stability
72   %wrt changes in regions.  I am not sure that we have done it and
73   %I am not sure it is necessary (Claudio).}
74  
75 < \begin{table}[htb]
75 > \begin{table}[ht]
76   \begin{center}
77   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
78 < 30 pb$^{-1}$ in the ABCD regions.}
79 < \begin{tabular}{|l|c|c|c|c||c|}
78 > 35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
79 > the signal region given by A $\times$ C / B. Here `SM other' is the sum
80 > of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
81 > $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
82 > \begin{tabular}{lccccc}
83 > \hline
84 >         sample                          &              A   &              B   &              C   &              D   &    A $\times$ C / B \\
85 > \hline
86 >
87 >
88 > \hline
89 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
90 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &           0.03   &           1.47   &           0.10   &           0.10   &           0.00  \\
91 >       SM other                          &           0.65   &           2.31   &           0.17   &           0.14   &           0.05  \\
92 > \hline
93 >    total SM MC                          &           8.63   &          36.85   &           5.07   &           1.43   &           1.19  \\
94 > \hline
95 > \end{tabular}
96 > \end{center}
97 > \end{table}
98 >
99 >
100 >
101 > \begin{table}[ht]
102 > \begin{center}
103 > \caption{\label{tab:abcdsyst} Results of the systematic study of the ABCD method by varying the boundaries
104 > between the ABCD regions shown in Fig.~\ref{fig:abcdMC}. Here $x_1$ is the lower SumJetPt boundary and
105 > $x_2$ is the boundary separating regions A and B from C and D, their nominal values are 125 and 300~GeV,
106 > respectively. $y_1$ is the lower MET/$\sqrt{\rm SumJetPt}$ boundary and
107 > $y_2$ is the boundary separating regions B and C from A and D, their nominal values are 4.5 and 8.5~GeV$^{1/2}$,
108 > respectively.}
109 > \begin{tabular}{cccc|c}
110 > \hline
111 > $x_1$   &   $x_2$ & $y_1$   &   $y_2$ & Observed/Predicted \\
112 > \hline
113 > nominal & nominal & nominal & nominal & 1.20     \\
114 > +5\%    & +5\%    & +2.5\%  & +2.5\%  & 1.38     \\
115 > +5\%    & +5\%    & nominal & nominal & 1.31     \\
116 > nominal & nominal & +2.5\%  & +2.5\%  & 1.25     \\
117 > nominal & +5\%    & nominal & +2.5\%  & 1.32     \\
118 > nominal & -5\%    & nominal & -2.5\%  & 1.16     \\
119 > -5\%    & -5\%    & +2.5\%  & +2.5\%  & 1.21     \\
120 > +5\%    & +5\%    & -2.5\%  & -2.5\%  & 1.26     \\
121   \hline
68 Sample   & A   & B    & C   & D   & AC/D \\ \hline
69 ttdil    & 6.9 & 28.6 & 4.2 & 1.0 & 1.0  \\
70 Zjets    & 0.0 & 1.3  & 0.1 & 0.1 & 0.0  \\
71 Other SM & 0.5 & 2.0  & 0.1 & 0.1 & 0.0  \\ \hline
72 total MC & 7.4 & 31.9 & 4.4 & 1.2 & 1.0 \\ \hline
122   \end{tabular}
123   \end{center}
124   \end{table}
# Line 90 | Line 139 | In practice one has to rescale the resul
139   to account for the fact that any dilepton selection must include a
140   moderate \met cut in order to reduce Drell Yan backgrounds.  This
141   is discussed in Section 5.3 of Reference~\cite{ref:ourvictory}; for a \met
142 < cut of 50 GeV, the rescaling factor is obtained from the data as
142 > cut of 50 GeV, the rescaling factor is obtained from the MC as
143  
144   \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
145   \begin{center}
# Line 115 | Line 164 | There are several effects that spoil the
164   $P_T(\ell\ell)$:
165   \begin{itemize}
166   \item $Ws$ in top events are polarized.  Neutrinos are emitted preferentially
167 < forward in the $W$ rest frame, thus the $P_T(\nu\nu)$ distribution is harder
167 > parallel to the $W$ velocity while charged leptons are emitted prefertially
168 > anti-parallel. Thus the $P_T(\nu\nu)$ distribution is harder
169   than the $P_T(\ell\ell)$ distribution for top dilepton events.
170   \item The lepton selections results in $P_T$ and $\eta$ cuts on the individual
171   leptons that have no simple correspondance to the neutrino requirements.
172   \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
173   neutrinos which is only partially compensated by the $K$ factor above.
174   \item The \met resolution is much worse than the dilepton $P_T$ resolution.
175 < When convoluted with a falling spectrum in the tails of \met, this result
175 > When convoluted with a falling spectrum in the tails of \met, this results
176   in a harder spectrum for \met than the original $P_T(\nu\nu)$.
177   \item The \met response in CMS is not exactly 1.  This causes a distortion
178   in the \met distribution that is not present in the $P_T(\ell\ell)$ distribution.
# Line 133 | Line 183 | of $P_T(\ell\ell)$ and $P_T(\nu\nu)$ do
183   sources.  These events can affect the background prediction.  Particularly
184   dangerous are high $P_T$ Drell Yan events that barely pass the \met$>$ 50
185   GeV selection.  They will tend to push the data-driven background prediction up.
186 + Therefore we estimate the number of DY events entering the background prediction
187 + using the $R_{out/in}$ method as described in Sec.~\ref{sec:othBG}.
188   \end{itemize}
189  
190   We have studied these effects in SM Monte Carlo, using a mixture of generator and
# Line 155 | Line 207 | under different assumptions.  See text f
207   4&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & Y          & 1.55  \\
208   5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
209   6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
210 < 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.18  \\
210 > 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.38  \\
211 > %%%NOTE: updated value 1.18 -> 1.46 since 2/3 DY events have been removed by updated analysis selections,
212 > %%%dpt/pt cut and general lepton veto
213   \hline
214   \end{tabular}
215   \end{center}
# Line 173 | Line 227 | Going from GEN to RECOSIM, the change in
227   % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
228   %for each 1.5\% change in \met response.}.  
229   Finally, contamination from non $t\bar{t}$
230 < events can have a significant impact on the BG prediction.  The changes between
231 < lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
232 < Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
233 < is statistically not well quantified).
230 > events can have a significant impact on the BG prediction.  
231 > %The changes between
232 > %lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
233 > %Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
234 > %is statistically not well quantified).
235  
236   An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
237   not include effects of spin correlations between the two top quarks.  
# Line 200 | Line 255 | be corrected by a factor of $ K_C = X \p
255   The value of this correction factor as well as the systematic uncertainty
256   will be assessed using 38X ttbar madgraph MC. In the following we use
257   $K_C = 1$ for simplicity. Based on previous MC studies we foresee a correction
258 < factor of $K_C \approx 1.2 - 1.4$, and we will assess an uncertainty
258 > factor of $K_C \approx 1.2 - 1.5$, and we will assess an uncertainty
259   based on the stability of the Monte Carlo tests under
260   variations of event selections, choices of \met algorithm, etc.
261   For example, we find that observed/predicted changes by roughly 0.1
# Line 230 | Line 285 | in the ABCD method but not in the $P_T(\
285  
286   The LM points are benchmarks for SUSY analyses at CMS.  The effects
287   of signal contaminations for a couple such points are summarized
288 < in Table~\ref{tab:sigcontABCD} and~\ref{tab:sigcontPT}.
234 < Signal contamination is definitely an important
288 > in Table~\ref{tab:sigcont}. Signal contamination is definitely an important
289   effect for these two LM points, but it does not totally hide the
290   presence of the signal.
291  
292  
293   \begin{table}[htb]
294   \begin{center}
295 < \caption{\label{tab:sigcontABCD} Effects of signal contamination
296 < for the background predictions of the ABCD method including LM0 or
297 < LM1.  Results
298 < are normalized to 30 pb$^{-1}$.}
299 < \begin{tabular}{|c|c||c|c||c|c|}
246 < \hline
247 < SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
248 < Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
249 < 1.2        & 1.0            & 6.8          & 3.7           & 3.4          & 1.3 \\
295 > \caption{\label{tab:sigcont} Effects of signal contamination
296 > for the two data-driven background estimates. The three columns give
297 > the expected yield in the signal region and the background estimates
298 > using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.}
299 > \begin{tabular}{lccc}
300   \hline
301 < \end{tabular}
302 < \end{center}
303 < \end{table}
304 <
305 < \begin{table}[htb]
256 < \begin{center}
257 < \caption{\label{tab:sigcontPT} Effects of signal contamination
258 < for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
259 < LM1.  Results
260 < are normalized to 30 pb$^{-1}$.}
261 < \begin{tabular}{|c|c||c|c||c|c|}
262 < \hline
263 < SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
264 < Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
265 < 1.2        & 1.0            & 6.8          & 2.2           & 3.4          & 1.5 \\
301 >            &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
302 > \hline
303 > SM only     &      1.43       &      1.19    &             1.03  \\
304 > SM + LM0    &      7.90       &      4.23    &             2.35  \\
305 > SM + LM1    &      4.00       &      1.53    &             1.51  \\
306   \hline
307   \end{tabular}
308   \end{center}
309   \end{table}
310  
311 +
312 +
313 + %\begin{table}[htb]
314 + %\begin{center}
315 + %\caption{\label{tab:sigcontABCD} Effects of signal contamination
316 + %for the background predictions of the ABCD method including LM0 or
317 + %LM1.  Results
318 + %are normalized to 30 pb$^{-1}$.}
319 + %\begin{tabular}{|c|c||c|c||c|c|}
320 + %\hline
321 + %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
322 + %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
323 + %1.2        & 1.0            & 6.8          & 3.7           & 3.4          & 1.3 \\
324 + %\hline
325 + %\end{tabular}
326 + %\end{center}
327 + %\end{table}
328 +
329 + %\begin{table}[htb]
330 + %\begin{center}
331 + %\caption{\label{tab:sigcontPT} Effects of signal contamination
332 + %for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
333 + %LM1.  Results
334 + %are normalized to 30 pb$^{-1}$.}
335 + %\begin{tabular}{|c|c||c|c||c|c|}
336 + %\hline
337 + %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
338 + %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
339 + %1.2        & 1.0            & 6.8          & 2.2           & 3.4          & 1.5 \\
340 + %\hline
341 + %\end{tabular}
342 + %\end{center}
343 + %\end{table}
344 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines