ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.24 by benhoob, Fri Nov 19 16:57:33 2010 UTC vs.
Revision 1.28 by benhoob, Thu Dec 2 14:27:31 2010 UTC

# Line 81 | Line 81 | of non-dileptonic $t\bar{t}$ decays, $W^
81   $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
82   \begin{tabular}{lccccc}
83   \hline
84 <         sample                          &              A   &              B   &              C   &              D   &    A $\times$ C / B \\
84 >              sample   &                   A   &                   B   &                   C   &                   D   &                      A $\times$ C / B  \\
85   \hline
86 <
87 <
88 < \hline
89 < $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
90 < $Z^0 \rightarrow \ell^{+}\ell^{-}$       &           0.03   &           1.47   &           0.10   &           0.10   &           0.00  \\
91 <       SM other                          &           0.65   &           2.31   &           0.17   &           0.14   &           0.05  \\
86 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &   8.27  $\pm$  0.18   &  32.16  $\pm$  0.35   &   4.69  $\pm$  0.13   &   1.05  $\pm$  0.06   &   1.21  $\pm$  0.04  \\
87 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &   0.22  $\pm$  0.11   &   1.54  $\pm$  0.29   &   0.05  $\pm$  0.05   &   0.16  $\pm$  0.09   &   0.01  $\pm$  0.01  \\
88 >            SM other                     &   0.54  $\pm$  0.03   &   2.28  $\pm$  0.12   &   0.23  $\pm$  0.03   &   0.07  $\pm$  0.01   &   0.05  $\pm$  0.01  \\
89   \hline
90 <    total SM MC                          &           8.63   &          36.85   &           5.07   &           1.43   &           1.19  \\
90 >         total SM MC                     &   9.03  $\pm$  0.21   &  35.97  $\pm$  0.46   &   4.97  $\pm$  0.15   &   1.29  $\pm$  0.11   &   1.25  $\pm$  0.05  \\
91   \hline
92   \end{tabular}
93   \end{center}
# Line 100 | Line 97 | $Z^0 \rightarrow \ell^{+}\ell^{-}$
97  
98   \begin{table}[ht]
99   \begin{center}
100 < \caption{\label{tab:abcdsyst} Results of the systematic study of the ABCD method by varying the boundaries
100 > \caption{\label{tab:abcdsyst}
101 > {\bf \color{red} Do we need this study at all? Observed/predicted is consistent within stat uncertainties as the boundaries are varied- is it enough to simply state this fact in the text??? }
102 > Results of the systematic study of the ABCD method by varying the boundaries
103   between the ABCD regions shown in Fig.~\ref{fig:abcdMC}. Here $x_1$ is the lower SumJetPt boundary and
104   $x_2$ is the boundary separating regions A and B from C and D, their nominal values are 125 and 300~GeV,
105   respectively. $y_1$ is the lower MET/$\sqrt{\rm SumJetPt}$ boundary and
# Line 110 | Line 109 | respectively.}
109   \hline
110   $x_1$   &   $x_2$ & $y_1$   &   $y_2$ & Observed/Predicted \\
111   \hline
112 < nominal & nominal & nominal & nominal & 1.20     \\
113 < +5\%    & +5\%    & +2.5\%  & +2.5\%  & 1.38     \\
114 < +5\%    & +5\%    & nominal & nominal & 1.31     \\
115 < nominal & nominal & +2.5\%  & +2.5\%  & 1.25     \\
116 < nominal & +5\%    & nominal & +2.5\%  & 1.32     \\
117 < nominal & -5\%    & nominal & -2.5\%  & 1.16     \\
118 < -5\%    & -5\%    & +2.5\%  & +2.5\%  & 1.21     \\
119 < +5\%    & +5\%    & -2.5\%  & -2.5\%  & 1.26     \\
112 > nominal & nominal & nominal & nominal & $1.20 \pm 0.12$    \\
113 > +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.38 \pm 0.15$    \\
114 > +5\%    & +5\%    & nominal & nominal & $1.31 \pm 0.14$    \\
115 > nominal & nominal & +2.5\%  & +2.5\%  & $1.25 \pm 0.13$    \\
116 > nominal & +5\%    & nominal & +2.5\%  & $1.32 \pm 0.14$    \\
117 > nominal & -5\%    & nominal & -2.5\%  & $1.16 \pm 0.09$    \\
118 > -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.21 \pm 0.11$    \\
119 > +5\%    & +5\%    & -2.5\%  & -2.5\%  & $1.26 \pm 0.12$    \\
120   \hline
121   \end{tabular}
122   \end{center}
# Line 195 | Line 194 | The results are summarized in Table~\ref
194  
195   \begin{table}[htb]
196   \begin{center}
197 < \caption{\label{tab:victorybad} Test of the data driven method in Monte Carlo
197 > \caption{\label{tab:victorybad}
198 > {\bf \color{red} Need to either update this with 38X MC  or remove it }
199 > Test of the data driven method in Monte Carlo
200   under different assumptions.  See text for details.}
201   \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
202   \hline
203   & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & Z veto & \met $>$ 50& obs/pred \\
204 < & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &  \\ \hline
204 > & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &       \\ \hline
205   1&Y                        &     N          &   N      &  GEN    &   N             &   N    & N          & 1.90  \\
206   2&Y                        &     N          &   N      &  GEN    &   Y             &   N    & N          & 1.64  \\
207   3&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & N          & 1.59  \\
# Line 208 | Line 209 | under different assumptions.  See text f
209   5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
210   6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
211   7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.38  \\
211 %%%NOTE: updated value 1.18 -> 1.46 since 2/3 DY events have been removed by updated analysis selections,
212 %%%dpt/pt cut and general lepton veto
212   \hline
213   \end{tabular}
214   \end{center}
215   \end{table}
216  
217  
218 + \begin{table}[htb]
219 + \begin{center}
220 + \caption{\label{tab:victorysyst}
221 + {Summary of uncertainties in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton.
222 + In the first table, `up' and `down' refer to shifting the hadronic energy scale up and down by 5\%. In the second table, the quoted value
223 + refers to the amount of additional smearing of the MET, as discussed in the text. In the third table, the normalization of all backgrounds
224 + other than $t\bar{t} \to$~dilepton is varied.
225 + {\bf \color{ref} Should I remove `observed' and `predicted' and show only the ratio? }}
226 +
227 + \begin{tabular}{ lcccc }
228 + \hline
229 +       MET scale  &      Predicted       &       Observed       &       Obs/pred       \\
230 + \hline
231 +        nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
232 +            up    &  0.92 $ \pm $ 0.11   &  1.53 $ \pm $ 0.12   &  1.66 $ \pm $ 0.23   \\
233 +          down    &  0.81 $ \pm $ 0.07   &  1.08 $ \pm $ 0.11   &  1.32 $ \pm $ 0.17   \\
234 + \hline
235 +
236 + \hline
237 +   MET smearing   &      Predicted       &       Observed        &       Obs/pred      \\
238 + \hline
239 +        nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
240 +           10\%   &  0.90 $ \pm $ 0.11   &  1.30 $ \pm $ 0.11   &  1.44 $ \pm $ 0.21   \\
241 +           20\%   &  0.84 $ \pm $ 0.07   &  1.36 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
242 +           30\%   &  1.05 $ \pm $ 0.18   &  1.32 $ \pm $ 0.11   &  1.27 $ \pm $ 0.24   \\
243 +           40\%   &  0.85 $ \pm $ 0.07   &  1.37 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
244 +           50\%   &  1.08 $ \pm $ 0.18   &  1.36 $ \pm $ 0.11   &  1.26 $ \pm $ 0.24   \\
245 + \hline
246 +
247 + \hline
248 +  non-$t\bar{t} \to$~dilepton scale factor   &          Predicted   &           Observed   &           Obs/pred   \\
249 + \hline
250 +   ttdil only                                &  0.77 $ \pm $ 0.07   &  1.05 $ \pm $ 0.06   &  1.36 $ \pm $ 0.14   \\
251 +   nominal                                   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
252 +   double non-ttdil yield                    &  1.06 $ \pm $ 0.18   &  1.52 $ \pm $ 0.20   &  1.43 $ \pm $ 0.30   \\
253 + \hline
254 + \end{tabular}
255 + \end{center}
256 + \end{table}
257 +
258 +
259 +
260   The largest discrepancy between prediction and observation occurs on the first
261   line of Table~\ref{tab:victorybad}, {\em i.e.}, at the generator level with no
262   cuts.  We have verified that this effect is due to the polarization of
# Line 238 | Line 279 | not include effects of spin correlations
279   We have studied this effect at the generator level using Alpgen.  We find
280   that the bias is at the few percent level.
281  
241 %%%TO BE REPLACED
242 %Based on the results of Table~\ref{tab:victorybad}, we conclude that the
243 %naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
244 %be corrected by a factor of {\color{red} $ K_{\rm{fudge}} =1.2 \pm 0.3$
245 %(We still need to settle on thie exact value of this.
246 %For the 11 pb analysis it is taken as =1.)} . The quoted
247 %uncertainty is based on the stability of the Monte Carlo tests under
248 %variations of event selections, choices of \met algorithm, etc.
249 %For example, we find that observed/predicted changes by roughly 0.1
250 %for each 1.5\% change in the average \met response.  
251
282   Based on the results of Table~\ref{tab:victorybad}, we conclude that the
283 < naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
284 < be corrected by a factor of $ K_C = X \pm Y$.
255 < The value of this correction factor as well as the systematic uncertainty
256 < will be assessed using 38X ttbar madgraph MC. In the following we use
257 < $K_C = 1$ for simplicity. Based on previous MC studies we foresee a correction
258 < factor of $K_C \approx 1.2 - 1.5$, and we will assess an uncertainty
259 < based on the stability of the Monte Carlo tests under
260 < variations of event selections, choices of \met algorithm, etc.
261 < For example, we find that observed/predicted changes by roughly 0.1
262 < for each 1.5\% change in the average \met response.
283 > naive data-driven background estimate based on $P_T{(\ell\ell)}$ needs to
284 > be corrected by a factor of $ K_C = 1.4 \pm 0.2(stat)$.
285  
286 + The 2 dominant sources of systematic uncertainty in $K_C$ are due to non-$t\bar{t} \to$~dilepton backgrounds,
287 + and the MET scale and resolution uncertainties. The impact of non-$t\bar{t}$-dilepton background is assessed
288 + by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton, as shown in Table~\ref{table_kc}.
289 + The systematic is assessed as the larger of the differences between the nominal $K_C$ value and the values
290 + obtained using only $t\bar{t} \to$~dilepton MC and obtained by doubling the non $t\bar{t} \to$~dilepton component,
291 + giving an uncertainty of $0.04$.
292 +
293 + The uncertainty in $K_C$ due to the MET scale uncertainty is assessed by varying the hadronic energy scale using
294 + the same method as in~\ref{} and checking how much $K_C$ changes, as summarized in Table~\ref{tab:victorysyst}.
295 + This gives an uncertainty of 0.3. We also assess the impact of the MET resolution uncertainty on $K_C$ by applying
296 + a random smearing to the MET. For each event, we determine the expected MET resolution based on the sumJetPt, and
297 + smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%. The results show that
298 + $K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty.
299  
300 + Incorporating all the statistical and systematic uncertainties we find $K_C = 1.4 \pm 0.4$.
301  
302   \subsection{Signal Contamination}
303   \label{sec:sigcont}
# Line 300 | Line 336 | using the ABCD and $P_T(\ell \ell)$ meth
336   \hline
337              &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
338   \hline
339 < SM only     &      1.43       &      1.19    &             1.03  \\
340 < SM + LM0    &      7.90       &      4.23    &             2.35  \\
341 < SM + LM1    &      4.00       &      1.53    &             1.51  \\
339 > SM only     &       1.29      &      1.25    &           0.92    \\
340 > SM + LM0    &       7.57      &      4.44    &           1.96    \\
341 > SM + LM1    &       3.85      &      1.60    &           1.43    \\
342   \hline
343   \end{tabular}
344   \end{center}
345   \end{table}
346  
311
312
313 %\begin{table}[htb]
314 %\begin{center}
315 %\caption{\label{tab:sigcontABCD} Effects of signal contamination
316 %for the background predictions of the ABCD method including LM0 or
317 %LM1.  Results
318 %are normalized to 30 pb$^{-1}$.}
319 %\begin{tabular}{|c|c||c|c||c|c|}
320 %\hline
321 %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
322 %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
323 %1.2        & 1.0            & 6.8          & 3.7           & 3.4          & 1.3 \\
324 %\hline
325 %\end{tabular}
326 %\end{center}
327 %\end{table}
328
329 %\begin{table}[htb]
330 %\begin{center}
331 %\caption{\label{tab:sigcontPT} Effects of signal contamination
332 %for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
333 %LM1.  Results
334 %are normalized to 30 pb$^{-1}$.}
335 %\begin{tabular}{|c|c||c|c||c|c|}
336 %\hline
337 %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
338 %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
339 %1.2        & 1.0            & 6.8          & 2.2           & 3.4          & 1.5 \\
340 %\hline
341 %\end{tabular}
342 %\end{center}
343 %\end{table}
344

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines