195 |
|
\begin{table}[htb] |
196 |
|
\begin{center} |
197 |
|
\caption{\label{tab:victorybad} |
198 |
< |
{\bf \color{red} Need to either update this with 38X MC, or replace it with the systematic studies varying the non-ttdil background yield and jet/met scale. } |
198 |
> |
{\bf \color{red} Need to either update this with 38X MC or remove it } |
199 |
|
Test of the data driven method in Monte Carlo |
200 |
|
under different assumptions. See text for details.} |
201 |
|
\begin{tabular}{|l|c|c|c|c|c|c|c|c|} |
202 |
|
\hline |
203 |
|
& True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or & Lepton $P_T$ & Z veto & \met $>$ 50& obs/pred \\ |
204 |
< |
& included & included & included & RECOSIM & and $\eta$ cuts & & & \\ \hline |
204 |
> |
& included & included & included & RECOSIM & and $\eta$ cuts & & & \\ \hline |
205 |
|
1&Y & N & N & GEN & N & N & N & 1.90 \\ |
206 |
|
2&Y & N & N & GEN & Y & N & N & 1.64 \\ |
207 |
|
3&Y & N & N & GEN & Y & Y & N & 1.59 \\ |
209 |
|
5&Y & N & N & RECOSIM & Y & Y & Y & 1.51 \\ |
210 |
|
6&Y & Y & N & RECOSIM & Y & Y & Y & 1.58 \\ |
211 |
|
7&Y & Y & Y & RECOSIM & Y & Y & Y & 1.38 \\ |
212 |
– |
%%%NOTE: updated value 1.18 -> 1.46 since 2/3 DY events have been removed by updated analysis selections, |
213 |
– |
%%%dpt/pt cut and general lepton veto |
212 |
|
\hline |
213 |
|
\end{tabular} |
214 |
|
\end{center} |
215 |
|
\end{table} |
216 |
|
|
217 |
|
|
218 |
+ |
\begin{table}[htb] |
219 |
+ |
\begin{center} |
220 |
+ |
\caption{\label{tab:victorysyst} |
221 |
+ |
{Summary of uncertainties in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton. |
222 |
+ |
In the first table, `up' and `down' refer to shifting the hadronic energy scale up and down by 5\%. In the second table, the quoted value |
223 |
+ |
refers to the amount of additional smearing of the MET, as discussed in the text. In the third table, the normalization of all backgrounds |
224 |
+ |
other than $t\bar{t} \to$~dilepton is varied. |
225 |
+ |
{\bf \color{ref} Should I remove `observed' and `predicted' and show only the ratio? }} |
226 |
+ |
|
227 |
+ |
\begin{tabular}{ lcccc } |
228 |
+ |
\hline |
229 |
+ |
MET scale & Predicted & Observed & Obs/pred \\ |
230 |
+ |
\hline |
231 |
+ |
nominal & 0.92 $ \pm $ 0.11 & 1.29 $ \pm $ 0.11 & 1.40 $ \pm $ 0.20 \\ |
232 |
+ |
up & 0.92 $ \pm $ 0.11 & 1.53 $ \pm $ 0.12 & 1.66 $ \pm $ 0.23 \\ |
233 |
+ |
down & 0.81 $ \pm $ 0.07 & 1.08 $ \pm $ 0.11 & 1.32 $ \pm $ 0.17 \\ |
234 |
+ |
\hline |
235 |
+ |
|
236 |
+ |
\hline |
237 |
+ |
MET smearing & Predicted & Observed & Obs/pred \\ |
238 |
+ |
\hline |
239 |
+ |
nominal & 0.92 $ \pm $ 0.11 & 1.29 $ \pm $ 0.11 & 1.40 $ \pm $ 0.20 \\ |
240 |
+ |
10\% & 0.90 $ \pm $ 0.11 & 1.30 $ \pm $ 0.11 & 1.44 $ \pm $ 0.21 \\ |
241 |
+ |
20\% & 0.84 $ \pm $ 0.07 & 1.36 $ \pm $ 0.11 & 1.61 $ \pm $ 0.19 \\ |
242 |
+ |
30\% & 1.05 $ \pm $ 0.18 & 1.32 $ \pm $ 0.11 & 1.27 $ \pm $ 0.24 \\ |
243 |
+ |
40\% & 0.85 $ \pm $ 0.07 & 1.37 $ \pm $ 0.11 & 1.61 $ \pm $ 0.19 \\ |
244 |
+ |
50\% & 1.08 $ \pm $ 0.18 & 1.36 $ \pm $ 0.11 & 1.26 $ \pm $ 0.24 \\ |
245 |
+ |
\hline |
246 |
+ |
|
247 |
+ |
\hline |
248 |
+ |
non-$t\bar{t} \to$~dilepton scale factor & Predicted & Observed & Obs/pred \\ |
249 |
+ |
\hline |
250 |
+ |
ttdil only & 0.77 $ \pm $ 0.07 & 1.05 $ \pm $ 0.06 & 1.36 $ \pm $ 0.14 \\ |
251 |
+ |
nominal & 0.92 $ \pm $ 0.11 & 1.29 $ \pm $ 0.11 & 1.40 $ \pm $ 0.20 \\ |
252 |
+ |
double non-ttdil yield & 1.06 $ \pm $ 0.18 & 1.52 $ \pm $ 0.20 & 1.43 $ \pm $ 0.30 \\ |
253 |
+ |
\hline |
254 |
+ |
\end{tabular} |
255 |
+ |
\end{center} |
256 |
+ |
\end{table} |
257 |
+ |
|
258 |
+ |
|
259 |
+ |
|
260 |
|
The largest discrepancy between prediction and observation occurs on the first |
261 |
|
line of Table~\ref{tab:victorybad}, {\em i.e.}, at the generator level with no |
262 |
|
cuts. We have verified that this effect is due to the polarization of |
279 |
|
We have studied this effect at the generator level using Alpgen. We find |
280 |
|
that the bias is at the few percent level. |
281 |
|
|
242 |
– |
%%%TO BE REPLACED |
243 |
– |
%Based on the results of Table~\ref{tab:victorybad}, we conclude that the |
244 |
– |
%naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to |
245 |
– |
%be corrected by a factor of {\color{red} $ K_{\rm{fudge}} =1.2 \pm 0.3$ |
246 |
– |
%(We still need to settle on thie exact value of this. |
247 |
– |
%For the 11 pb analysis it is taken as =1.)} . The quoted |
248 |
– |
%uncertainty is based on the stability of the Monte Carlo tests under |
249 |
– |
%variations of event selections, choices of \met algorithm, etc. |
250 |
– |
%For example, we find that observed/predicted changes by roughly 0.1 |
251 |
– |
%for each 1.5\% change in the average \met response. |
252 |
– |
|
282 |
|
Based on the results of Table~\ref{tab:victorybad}, we conclude that the |
283 |
< |
naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to |
284 |
< |
be corrected by a factor of $ K_C = X \pm Y$. |
256 |
< |
The value of this correction factor as well as the systematic uncertainty |
257 |
< |
will be assessed using 38X ttbar madgraph MC. In the following we use |
258 |
< |
$K_C = 1$ for simplicity. Based on previous MC studies we foresee a correction |
259 |
< |
factor of $K_C \approx 1.2 - 1.5$, and we will assess an uncertainty |
260 |
< |
based on the stability of the Monte Carlo tests under |
261 |
< |
variations of event selections, choices of \met algorithm, etc. |
262 |
< |
For example, we find that observed/predicted changes by roughly 0.1 |
263 |
< |
for each 1.5\% change in the average \met response. |
283 |
> |
naive data-driven background estimate based on $P_T{(\ell\ell)}$ needs to |
284 |
> |
be corrected by a factor of $ K_C = 1.4 \pm 0.2(stat)$. |
285 |
|
|
286 |
+ |
The 2 dominant sources of systematic uncertainty in $K_C$ are due to non-$t\bar{t} \to$~dilepton backgrounds, |
287 |
+ |
and the MET scale and resolution uncertainties. The impact of non-$t\bar{t}$-dilepton background is assessed |
288 |
+ |
by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton, as shown in Table~\ref{table_kc}. |
289 |
+ |
The systematic is assessed as the larger of the differences between the nominal $K_C$ value and the values |
290 |
+ |
obtained using only $t\bar{t} \to$~dilepton MC and obtained by doubling the non $t\bar{t} \to$~dilepton component, |
291 |
+ |
giving an uncertainty of $0.04$. |
292 |
+ |
|
293 |
+ |
The uncertainty in $K_C$ due to the MET scale uncertainty is assessed by varying the hadronic energy scale using |
294 |
+ |
the same method as in~\ref{} and checking how much $K_C$ changes, as summarized in Table~\ref{tab:victorysyst}. |
295 |
+ |
This gives an uncertainty of 0.3. We also assess the impact of the MET resolution uncertainty on $K_C$ by applying |
296 |
+ |
a random smearing to the MET. For each event, we determine the expected MET resolution based on the sumJetPt, and |
297 |
+ |
smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%. The results show that |
298 |
+ |
$K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty. |
299 |
|
|
300 |
+ |
Incorporating all the statistical and systematic uncertainties we find $K_C = 1.4 \pm 0.4$. |
301 |
|
|
302 |
|
\subsection{Signal Contamination} |
303 |
|
\label{sec:sigcont} |