ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.1 by claudioc, Thu Oct 28 05:28:08 2010 UTC vs.
Revision 1.28 by benhoob, Thu Dec 2 14:27:31 2010 UTC

# Line 2 | Line 2
2   \label{sec:datadriven}
3   We have developed two data-driven methods to
4   estimate the background in the signal region.
5 < The first one explouts the fact that
6 < \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
5 > The first one exploits the fact that
6 > SumJetPt and \met$/\sqrt{\rm SumJetPt}$ are nearly
7   uncorrelated for the $t\bar{t}$ background
8   (Section~\ref{sec:abcd});  the second one
9   is based on the fact that in $t\bar{t}$ the
# Line 12 | Line 12 | nearly the same as the $P_T$ of the pair
12   from $W$-decays, which is reconstructed as \met in the
13   detector.
14  
15 < in 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
16 < the signal region.  The expectations from the LMO
17 < and LM1 SUSY benchmark points are {\color{red} XX} and
18 < {\color{red} XX} events respectively.
15 >
16 > %{\color{red} I took these
17 > %numbers from the twiki, rescaling from 11.06 to 30/pb.
18 > %They seem too large...are they really right?}
19  
20  
21   \subsection{ABCD method}
22   \label{sec:abcd}
23  
24 < We find that in $t\bar{t}$ events \met and
25 < \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated.
26 < This is demonstrated in Figure~\ref{fig:uncor}.
24 > We find that in $t\bar{t}$ events SumJetPt and
25 > \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 > as demonstrated in Figure~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
30 < \begin{figure}[htb]
30 > %\begin{figure}[bht]
31 > %\begin{center}
32 > %\includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
33 > %\caption{\label{fig:uncor}\protect Distributions of SumJetPt
34 > %in MC $t\bar{t}$ events for different intervals of
35 > %MET$/\sqrt{\rm SumJetPt}$.}
36 > %\end{center}
37 > %\end{figure}
38 >
39 > \begin{figure}[bht]
40   \begin{center}
41 < \includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
41 > \includegraphics[width=0.75\linewidth]{uncor.png}
42   \caption{\label{fig:uncor}\protect Distributions of SumJetPt
43   in MC $t\bar{t}$ events for different intervals of
44 < MET$/\sqrt{\rm SumJetPt}$.}
44 > MET$/\sqrt{\rm SumJetPt}$. h1, h2, and h3 refer to the MET$/\sqrt{\rm SumJetPt}$
45 > intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively.}
46   \end{center}
47   \end{figure}
48  
49 < \begin{figure}[htb]
49 > \begin{figure}[tb]
50   \begin{center}
51 < \includegraphics[width=0.75\linewidth]{abcdMC.jpg}
52 < \caption{\label{fig:abcdMC}\protect Distributions of SumJetPt
53 < vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo.  Here we also
44 < show our choice of ABCD regions. {\color{red} We need a better
45 < picture with the letters A-B-C-D and with the numerical values
46 < of the boundaries clearly indicated.}}
51 > \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
52 > \caption{\label{fig:abcdMC}\protect Distributions of MET$/\sqrt{\rm SumJetPt}$ vs.
53 > SumJetPt for SM Monte Carlo.  Here we also show our choice of ABCD regions.}
54   \end{center}
55   \end{figure}
56  
# Line 51 | Line 58 | of the boundaries clearly indicated.}}
58   Our choice of ABCD regions is shown in Figure~\ref{fig:abcdMC}.
59   The signal region is region D.  The expected number of events
60   in the four regions for the SM Monte Carlo, as well as the BG
61 < prediction AC/B is given in Table~\ref{tab:abcdMC} for an integrated
62 < luminosity of 30 pb$^{-1}$.  The ABCD method is accurate
63 < to about 10\%.
61 > prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
62 > luminosity of 35 pb$^{-1}$.  The ABCD method with chosen boundaries is accurate
63 > to about 20\%. As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties
64 > by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty,
65 > which we take as $\pm$5\% for SumJetPt and $\pm$2.5\% for MET/$\sqrt{\rm SumJetPt}$, since the
66 > uncertainty on this quantity partially cancels due to the fact that it is a ratio of correlated
67 > quantities. Based on these studies we assess a correction factor $k_{ABCD} = 1.2 \pm 0.2$ to the
68 > predicted yield using the ABCD method.
69  
70 < \begin{table}[htb]
70 >
71 > %{\color{red} Avi wants some statement about stability
72 > %wrt changes in regions.  I am not sure that we have done it and
73 > %I am not sure it is necessary (Claudio).}
74 >
75 > \begin{table}[ht]
76   \begin{center}
77   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
78 < 30 pb$^{-1}$ in the ABCD regions.}
79 < \begin{tabular}{|l|c|c|c|c||c|}
78 > 35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
79 > the signal region given by A $\times$ C / B. Here `SM other' is the sum
80 > of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
81 > $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
82 > \begin{tabular}{lccccc}
83 > \hline
84 >              sample   &                   A   &                   B   &                   C   &                   D   &                      A $\times$ C / B  \\
85 > \hline
86 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &   8.27  $\pm$  0.18   &  32.16  $\pm$  0.35   &   4.69  $\pm$  0.13   &   1.05  $\pm$  0.06   &   1.21  $\pm$  0.04  \\
87 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &   0.22  $\pm$  0.11   &   1.54  $\pm$  0.29   &   0.05  $\pm$  0.05   &   0.16  $\pm$  0.09   &   0.01  $\pm$  0.01  \\
88 >            SM other                     &   0.54  $\pm$  0.03   &   2.28  $\pm$  0.12   &   0.23  $\pm$  0.03   &   0.07  $\pm$  0.01   &   0.05  $\pm$  0.01  \\
89 > \hline
90 >         total SM MC                     &   9.03  $\pm$  0.21   &  35.97  $\pm$  0.46   &   4.97  $\pm$  0.15   &   1.29  $\pm$  0.11   &   1.25  $\pm$  0.05  \\
91   \hline
64 Sample   & A   & B    & C   & D   & AC/D \\ \hline
65 ttdil    & 6.4 & 28.4 & 4.2 & 1.0 & 0.9  \\
66 Zjets    & 0.0 & 1.3  & 0.2 & 0.0 & 0.0  \\
67 Other SM & 0.6 & 2.1  & 0.2 & 0.1 & 0.0  \\ \hline
68 total MC & 7.0 & 31.8 & 4.5 & 1.1 & 1.0 \\ \hline
92   \end{tabular}
93   \end{center}
94   \end{table}
95  
96  
97  
98 + \begin{table}[ht]
99 + \begin{center}
100 + \caption{\label{tab:abcdsyst}
101 + {\bf \color{red} Do we need this study at all? Observed/predicted is consistent within stat uncertainties as the boundaries are varied- is it enough to simply state this fact in the text??? }
102 + Results of the systematic study of the ABCD method by varying the boundaries
103 + between the ABCD regions shown in Fig.~\ref{fig:abcdMC}. Here $x_1$ is the lower SumJetPt boundary and
104 + $x_2$ is the boundary separating regions A and B from C and D, their nominal values are 125 and 300~GeV,
105 + respectively. $y_1$ is the lower MET/$\sqrt{\rm SumJetPt}$ boundary and
106 + $y_2$ is the boundary separating regions B and C from A and D, their nominal values are 4.5 and 8.5~GeV$^{1/2}$,
107 + respectively.}
108 + \begin{tabular}{cccc|c}
109 + \hline
110 + $x_1$   &   $x_2$ & $y_1$   &   $y_2$ & Observed/Predicted \\
111 + \hline
112 + nominal & nominal & nominal & nominal & $1.20 \pm 0.12$    \\
113 + +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.38 \pm 0.15$    \\
114 + +5\%    & +5\%    & nominal & nominal & $1.31 \pm 0.14$    \\
115 + nominal & nominal & +2.5\%  & +2.5\%  & $1.25 \pm 0.13$    \\
116 + nominal & +5\%    & nominal & +2.5\%  & $1.32 \pm 0.14$    \\
117 + nominal & -5\%    & nominal & -2.5\%  & $1.16 \pm 0.09$    \\
118 + -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.21 \pm 0.11$    \\
119 + +5\%    & +5\%    & -2.5\%  & -2.5\%  & $1.26 \pm 0.12$    \\
120 + \hline
121 + \end{tabular}
122 + \end{center}
123 + \end{table}
124 +
125 + \subsection{Dilepton $P_T$ method}
126 + \label{sec:victory}
127 + This method is based on a suggestion by V. Pavlunin\cite{ref:victory},
128 + and was investigated by our group in 2009\cite{ref:ourvictory}.
129 + The idea is that in dilepton $t\bar{t}$ events the lepton and neutrinos
130 + from $W$ decays have the same $P_T$ spectrum (modulo $W$ polarization
131 + effects).  One can then use the observed
132 + $P_T(\ell\ell)$ distribution to model the sum of neutrino $P_T$'s which
133 + is identified with the \met.
134 +
135 + Then, in order to predict the $t\bar{t} \to$ dilepton contribution to a
136 + selection with \met$+$X, one applies a cut on $P_T(\ell\ell)+$X instead.
137 + In practice one has to rescale the result of the $P_T(\ell\ell)+$X selection
138 + to account for the fact that any dilepton selection must include a
139 + moderate \met cut in order to reduce Drell Yan backgrounds.  This
140 + is discussed in Section 5.3 of Reference~\cite{ref:ourvictory}; for a \met
141 + cut of 50 GeV, the rescaling factor is obtained from the MC as
142 +
143 + \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
144 + \begin{center}
145 + $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~}$
146 + \end{center}
147 +
148 +
149 + Monte Carlo studies give values of $K$ that are typically between 1.5 and 1.6,
150 + depending on selection details.  
151 + %%%TO BE REPLACED
152 + %Given the integrated luminosity of the
153 + %present dataset, the determination of $K$ in data is severely statistics
154 + %limited.  Thus, we take $K$ from $t\bar{t}$ Monte Carlo as
155 +
156 + %\begin{center}
157 + %$ K_{MC} = \frac{\int_0^{\infty} {\cal N}(\met)~~d\met~}{\int_{50}^{\infty} {\cal N}(\met)~~d\met~}$
158 + %\end{center}
159 +
160 + %\noindent {\color{red} For the 11 pb result we have used $K$ from data.}
161 +
162 + There are several effects that spoil the correspondance between \met and
163 + $P_T(\ell\ell)$:
164 + \begin{itemize}
165 + \item $Ws$ in top events are polarized.  Neutrinos are emitted preferentially
166 + parallel to the $W$ velocity while charged leptons are emitted prefertially
167 + anti-parallel. Thus the $P_T(\nu\nu)$ distribution is harder
168 + than the $P_T(\ell\ell)$ distribution for top dilepton events.
169 + \item The lepton selections results in $P_T$ and $\eta$ cuts on the individual
170 + leptons that have no simple correspondance to the neutrino requirements.
171 + \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
172 + neutrinos which is only partially compensated by the $K$ factor above.
173 + \item The \met resolution is much worse than the dilepton $P_T$ resolution.
174 + When convoluted with a falling spectrum in the tails of \met, this results
175 + in a harder spectrum for \met than the original $P_T(\nu\nu)$.
176 + \item The \met response in CMS is not exactly 1.  This causes a distortion
177 + in the \met distribution that is not present in the $P_T(\ell\ell)$ distribution.
178 + \item The $t\bar{t} \to$ dilepton signal includes contributions from
179 + $W \to \tau \to \ell$.  For these events the arguments about the equivalence
180 + of $P_T(\ell\ell)$ and $P_T(\nu\nu)$ do not apply.
181 + \item A dilepton selection will include SM events from non $t\bar{t}$
182 + sources.  These events can affect the background prediction.  Particularly
183 + dangerous are high $P_T$ Drell Yan events that barely pass the \met$>$ 50
184 + GeV selection.  They will tend to push the data-driven background prediction up.
185 + Therefore we estimate the number of DY events entering the background prediction
186 + using the $R_{out/in}$ method as described in Sec.~\ref{sec:othBG}.
187 + \end{itemize}
188 +
189 + We have studied these effects in SM Monte Carlo, using a mixture of generator and
190 + reconstruction level studies, putting the various effects in one at a time.
191 + For each configuration, we apply the data-driven method and report as figure
192 + of merit the ratio of observed and predicted events in the signal region.
193 + The results are summarized in Table~\ref{tab:victorybad}.
194 +
195 + \begin{table}[htb]
196 + \begin{center}
197 + \caption{\label{tab:victorybad}
198 + {\bf \color{red} Need to either update this with 38X MC  or remove it }
199 + Test of the data driven method in Monte Carlo
200 + under different assumptions.  See text for details.}
201 + \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
202 + \hline
203 + & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & Z veto & \met $>$ 50& obs/pred \\
204 + & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &       \\ \hline
205 + 1&Y                        &     N          &   N      &  GEN    &   N             &   N    & N          & 1.90  \\
206 + 2&Y                        &     N          &   N      &  GEN    &   Y             &   N    & N          & 1.64  \\
207 + 3&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & N          & 1.59  \\
208 + 4&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & Y          & 1.55  \\
209 + 5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
210 + 6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
211 + 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.38  \\
212 + \hline
213 + \end{tabular}
214 + \end{center}
215 + \end{table}
216 +
217 +
218 + \begin{table}[htb]
219 + \begin{center}
220 + \caption{\label{tab:victorysyst}
221 + {Summary of uncertainties in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton.
222 + In the first table, `up' and `down' refer to shifting the hadronic energy scale up and down by 5\%. In the second table, the quoted value
223 + refers to the amount of additional smearing of the MET, as discussed in the text. In the third table, the normalization of all backgrounds
224 + other than $t\bar{t} \to$~dilepton is varied.
225 + {\bf \color{ref} Should I remove `observed' and `predicted' and show only the ratio? }}
226 +
227 + \begin{tabular}{ lcccc }
228 + \hline
229 +       MET scale  &      Predicted       &       Observed       &       Obs/pred       \\
230 + \hline
231 +        nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
232 +            up    &  0.92 $ \pm $ 0.11   &  1.53 $ \pm $ 0.12   &  1.66 $ \pm $ 0.23   \\
233 +          down    &  0.81 $ \pm $ 0.07   &  1.08 $ \pm $ 0.11   &  1.32 $ \pm $ 0.17   \\
234 + \hline
235 +
236 + \hline
237 +   MET smearing   &      Predicted       &       Observed        &       Obs/pred      \\
238 + \hline
239 +        nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
240 +           10\%   &  0.90 $ \pm $ 0.11   &  1.30 $ \pm $ 0.11   &  1.44 $ \pm $ 0.21   \\
241 +           20\%   &  0.84 $ \pm $ 0.07   &  1.36 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
242 +           30\%   &  1.05 $ \pm $ 0.18   &  1.32 $ \pm $ 0.11   &  1.27 $ \pm $ 0.24   \\
243 +           40\%   &  0.85 $ \pm $ 0.07   &  1.37 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
244 +           50\%   &  1.08 $ \pm $ 0.18   &  1.36 $ \pm $ 0.11   &  1.26 $ \pm $ 0.24   \\
245 + \hline
246 +
247 + \hline
248 +  non-$t\bar{t} \to$~dilepton scale factor   &          Predicted   &           Observed   &           Obs/pred   \\
249 + \hline
250 +   ttdil only                                &  0.77 $ \pm $ 0.07   &  1.05 $ \pm $ 0.06   &  1.36 $ \pm $ 0.14   \\
251 +   nominal                                   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
252 +   double non-ttdil yield                    &  1.06 $ \pm $ 0.18   &  1.52 $ \pm $ 0.20   &  1.43 $ \pm $ 0.30   \\
253 + \hline
254 + \end{tabular}
255 + \end{center}
256 + \end{table}
257 +
258 +
259 +
260 + The largest discrepancy between prediction and observation occurs on the first
261 + line of Table~\ref{tab:victorybad}, {\em i.e.}, at the generator level with no
262 + cuts.  We have verified that this effect is due to the polarization of
263 + the $W$ (we remove the polarization by reweighting the events and we get
264 + good agreement between prediction and observation).  The kinematical
265 + requirements (lines 2,3,4) compensate somewhat for the effect of W polarization.
266 + Going from GEN to RECOSIM, the change in observed/predicted is small.  
267 + % We have tracked this down to the fact that tcMET underestimates the true \met
268 + % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
269 + %for each 1.5\% change in \met response.}.  
270 + Finally, contamination from non $t\bar{t}$
271 + events can have a significant impact on the BG prediction.  
272 + %The changes between
273 + %lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
274 + %Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
275 + %is statistically not well quantified).
276 +
277 + An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
278 + not include effects of spin correlations between the two top quarks.  
279 + We have studied this effect at the generator level using Alpgen.  We find
280 + that the bias is at the few percent level.
281 +
282 + Based on the results of Table~\ref{tab:victorybad}, we conclude that the
283 + naive data-driven background estimate based on $P_T{(\ell\ell)}$ needs to
284 + be corrected by a factor of $ K_C = 1.4 \pm 0.2(stat)$.
285 +
286 + The 2 dominant sources of systematic uncertainty in $K_C$ are due to non-$t\bar{t} \to$~dilepton backgrounds,
287 + and the MET scale and resolution uncertainties. The impact of non-$t\bar{t}$-dilepton background is assessed
288 + by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton, as shown in Table~\ref{table_kc}.
289 + The systematic is assessed as the larger of the differences between the nominal $K_C$ value and the values
290 + obtained using only $t\bar{t} \to$~dilepton MC and obtained by doubling the non $t\bar{t} \to$~dilepton component,
291 + giving an uncertainty of $0.04$.
292 +
293 + The uncertainty in $K_C$ due to the MET scale uncertainty is assessed by varying the hadronic energy scale using
294 + the same method as in~\ref{} and checking how much $K_C$ changes, as summarized in Table~\ref{tab:victorysyst}.
295 + This gives an uncertainty of 0.3. We also assess the impact of the MET resolution uncertainty on $K_C$ by applying
296 + a random smearing to the MET. For each event, we determine the expected MET resolution based on the sumJetPt, and
297 + smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%. The results show that
298 + $K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty.
299 +
300 + Incorporating all the statistical and systematic uncertainties we find $K_C = 1.4 \pm 0.4$.
301 +
302 + \subsection{Signal Contamination}
303 + \label{sec:sigcont}
304 +
305 + All data-driven methods are in principle subject to signal contaminations
306 + in the control regions, and the methods described in
307 + Sections~\ref{sec:abcd} and~\ref{sec:victory} are not exceptions.
308 + Signal contamination tends to dilute the significance of a signal
309 + present in the data by inflating the background prediction.
310 +
311 + It is hard to quantify how important these effects are because we
312 + do not know what signal may be hiding in the data.  Having two
313 + independent methods (in addition to Monte Carlo ``dead-reckoning'')
314 + adds redundancy because signal contamination can have different effects
315 + in the different control regions for the two methods.
316 + For example, in the extreme case of a
317 + new physics signal
318 + with $P_T(\ell \ell) = \met$, an excess of events would be seen
319 + in the ABCD method but not in the $P_T(\ell \ell)$ method.
320 +
321 +
322 + The LM points are benchmarks for SUSY analyses at CMS.  The effects
323 + of signal contaminations for a couple such points are summarized
324 + in Table~\ref{tab:sigcont}. Signal contamination is definitely an important
325 + effect for these two LM points, but it does not totally hide the
326 + presence of the signal.
327 +
328 +
329 + \begin{table}[htb]
330 + \begin{center}
331 + \caption{\label{tab:sigcont} Effects of signal contamination
332 + for the two data-driven background estimates. The three columns give
333 + the expected yield in the signal region and the background estimates
334 + using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.}
335 + \begin{tabular}{lccc}
336 + \hline
337 +            &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
338 + \hline
339 + SM only     &       1.29      &      1.25    &           0.92    \\
340 + SM + LM0    &       7.57      &      4.44    &           1.96    \\
341 + SM + LM1    &       3.85      &      1.60    &           1.43    \\
342 + \hline
343 + \end{tabular}
344 + \end{center}
345 + \end{table}
346  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines