3 |
|
We have developed two data-driven methods to |
4 |
|
estimate the background in the signal region. |
5 |
|
The first one exploits the fact that |
6 |
< |
\met and \met$/\sqrt{\rm SumJetPt}$ are nearly |
6 |
> |
SumJetPt and \met$/\sqrt{\rm SumJetPt}$ are nearly |
7 |
|
uncorrelated for the $t\bar{t}$ background |
8 |
|
(Section~\ref{sec:abcd}); the second one |
9 |
|
is based on the fact that in $t\bar{t}$ the |
21 |
|
\subsection{ABCD method} |
22 |
|
\label{sec:abcd} |
23 |
|
|
24 |
< |
We find that in $t\bar{t}$ events \met and |
24 |
> |
We find that in $t\bar{t}$ events SumJetPt and |
25 |
|
\met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated, |
26 |
|
as demonstrated in Figure~\ref{fig:uncor}. |
27 |
|
Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs |
28 |
|
sumJetPt plane to estimate the background in a data driven way. |
29 |
|
|
30 |
+ |
%\begin{figure}[bht] |
31 |
+ |
%\begin{center} |
32 |
+ |
%\includegraphics[width=0.75\linewidth]{uncorrelated.pdf} |
33 |
+ |
%\caption{\label{fig:uncor}\protect Distributions of SumJetPt |
34 |
+ |
%in MC $t\bar{t}$ events for different intervals of |
35 |
+ |
%MET$/\sqrt{\rm SumJetPt}$.} |
36 |
+ |
%\end{center} |
37 |
+ |
%\end{figure} |
38 |
+ |
|
39 |
|
\begin{figure}[bht] |
40 |
|
\begin{center} |
41 |
< |
\includegraphics[width=0.75\linewidth]{uncorrelated.pdf} |
41 |
> |
\includegraphics[width=0.75\linewidth]{uncor.png} |
42 |
|
\caption{\label{fig:uncor}\protect Distributions of SumJetPt |
43 |
|
in MC $t\bar{t}$ events for different intervals of |
44 |
< |
MET$/\sqrt{\rm SumJetPt}$.} |
44 |
> |
MET$/\sqrt{\rm SumJetPt}$. h1, h2, and h3 refer to the MET$/\sqrt{\rm SumJetPt}$ |
45 |
> |
intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively.} |
46 |
|
\end{center} |
47 |
|
\end{figure} |
48 |
|
|
49 |
|
\begin{figure}[tb] |
50 |
|
\begin{center} |
51 |
|
\includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf} |
52 |
< |
\caption{\label{fig:abcdMC}\protect Distributions of SumJetPt |
53 |
< |
vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo. Here we also |
44 |
< |
show our choice of ABCD regions.} |
52 |
> |
\caption{\label{fig:abcdMC}\protect Distributions of MET$/\sqrt{\rm SumJetPt}$ vs. |
53 |
> |
SumJetPt for SM Monte Carlo. Here we also show our choice of ABCD regions.} |
54 |
|
\end{center} |
55 |
|
\end{figure} |
56 |
|
|
59 |
|
The signal region is region D. The expected number of events |
60 |
|
in the four regions for the SM Monte Carlo, as well as the BG |
61 |
|
prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated |
62 |
< |
luminosity of 35 pb$^{-1}$. The ABCD method is accurate |
63 |
< |
to about 20\%. |
62 |
> |
luminosity of 35 pb$^{-1}$. The ABCD method with chosen boundaries is accurate |
63 |
> |
to about 20\%. As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties |
64 |
> |
by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty, |
65 |
> |
which we take as $\pm$5\% for SumJetPt and $\pm$2.5\% for MET/$\sqrt{\rm SumJetPt}$, since the |
66 |
> |
uncertainty on this quantity partially cancels due to the fact that it is a ratio of correlated |
67 |
> |
quantities. Based on these studies we assess a correction factor $k_{ABCD} = 1.2 \pm 0.2$ to the |
68 |
> |
predicted yield using the ABCD method. |
69 |
> |
|
70 |
> |
|
71 |
|
%{\color{red} Avi wants some statement about stability |
72 |
|
%wrt changes in regions. I am not sure that we have done it and |
73 |
|
%I am not sure it is necessary (Claudio).} |
81 |
|
$W^{\pm}Z^0$, $Z^0Z^0$ and single top.} |
82 |
|
\begin{tabular}{lccccc} |
83 |
|
\hline |
84 |
< |
sample & A & B & C & D & A $\times$ C / B \\ |
84 |
> |
sample & A & B & C & D & A $\times$ C / B \\ |
85 |
> |
\hline |
86 |
> |
$t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 8.27 $\pm$ 0.18 & 32.16 $\pm$ 0.35 & 4.69 $\pm$ 0.13 & 1.05 $\pm$ 0.06 & 1.21 $\pm$ 0.04 \\ |
87 |
> |
$Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.22 $\pm$ 0.11 & 1.54 $\pm$ 0.29 & 0.05 $\pm$ 0.05 & 0.16 $\pm$ 0.09 & 0.01 $\pm$ 0.01 \\ |
88 |
> |
SM other & 0.54 $\pm$ 0.03 & 2.28 $\pm$ 0.12 & 0.23 $\pm$ 0.03 & 0.07 $\pm$ 0.01 & 0.05 $\pm$ 0.01 \\ |
89 |
|
\hline |
90 |
+ |
total SM MC & 9.03 $\pm$ 0.21 & 35.97 $\pm$ 0.46 & 4.97 $\pm$ 0.15 & 1.29 $\pm$ 0.11 & 1.25 $\pm$ 0.05 \\ |
91 |
+ |
\hline |
92 |
+ |
\end{tabular} |
93 |
+ |
\end{center} |
94 |
+ |
\end{table} |
95 |
+ |
|
96 |
|
|
97 |
|
|
98 |
+ |
\begin{table}[ht] |
99 |
+ |
\begin{center} |
100 |
+ |
\caption{\label{tab:abcdsyst} |
101 |
+ |
{\bf \color{red} Do we need this study at all? Observed/predicted is consistent within stat uncertainties as the boundaries are varied- is it enough to simply state this fact in the text??? } |
102 |
+ |
Results of the systematic study of the ABCD method by varying the boundaries |
103 |
+ |
between the ABCD regions shown in Fig.~\ref{fig:abcdMC}. Here $x_1$ is the lower SumJetPt boundary and |
104 |
+ |
$x_2$ is the boundary separating regions A and B from C and D, their nominal values are 125 and 300~GeV, |
105 |
+ |
respectively. $y_1$ is the lower MET/$\sqrt{\rm SumJetPt}$ boundary and |
106 |
+ |
$y_2$ is the boundary separating regions B and C from A and D, their nominal values are 4.5 and 8.5~GeV$^{1/2}$, |
107 |
+ |
respectively.} |
108 |
+ |
\begin{tabular}{cccc|c} |
109 |
|
\hline |
110 |
< |
$t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 7.96 & 33.07 & 4.81 & 1.20 & 1.16 \\ |
74 |
< |
$Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.03 & 1.47 & 0.10 & 0.10 & 0.00 \\ |
75 |
< |
SM other & 0.65 & 2.31 & 0.17 & 0.14 & 0.05 \\ |
110 |
> |
$x_1$ & $x_2$ & $y_1$ & $y_2$ & Observed/Predicted \\ |
111 |
|
\hline |
112 |
< |
total SM MC & 8.63 & 36.85 & 5.07 & 1.43 & 1.19 \\ |
112 |
> |
nominal & nominal & nominal & nominal & $1.20 \pm 0.12$ \\ |
113 |
> |
+5\% & +5\% & +2.5\% & +2.5\% & $1.38 \pm 0.15$ \\ |
114 |
> |
+5\% & +5\% & nominal & nominal & $1.31 \pm 0.14$ \\ |
115 |
> |
nominal & nominal & +2.5\% & +2.5\% & $1.25 \pm 0.13$ \\ |
116 |
> |
nominal & +5\% & nominal & +2.5\% & $1.32 \pm 0.14$ \\ |
117 |
> |
nominal & -5\% & nominal & -2.5\% & $1.16 \pm 0.09$ \\ |
118 |
> |
-5\% & -5\% & +2.5\% & +2.5\% & $1.21 \pm 0.11$ \\ |
119 |
> |
+5\% & +5\% & -2.5\% & -2.5\% & $1.26 \pm 0.12$ \\ |
120 |
|
\hline |
121 |
|
\end{tabular} |
122 |
|
\end{center} |
163 |
|
$P_T(\ell\ell)$: |
164 |
|
\begin{itemize} |
165 |
|
\item $Ws$ in top events are polarized. Neutrinos are emitted preferentially |
166 |
< |
forward in the $W$ rest frame, thus the $P_T(\nu\nu)$ distribution is harder |
166 |
> |
parallel to the $W$ velocity while charged leptons are emitted prefertially |
167 |
> |
anti-parallel. Thus the $P_T(\nu\nu)$ distribution is harder |
168 |
|
than the $P_T(\ell\ell)$ distribution for top dilepton events. |
169 |
|
\item The lepton selections results in $P_T$ and $\eta$ cuts on the individual |
170 |
|
leptons that have no simple correspondance to the neutrino requirements. |
194 |
|
|
195 |
|
\begin{table}[htb] |
196 |
|
\begin{center} |
197 |
< |
\caption{\label{tab:victorybad} Test of the data driven method in Monte Carlo |
197 |
> |
\caption{\label{tab:victorybad} |
198 |
> |
{\bf \color{red} Need to either update this with 38X MC or remove it } |
199 |
> |
Test of the data driven method in Monte Carlo |
200 |
|
under different assumptions. See text for details.} |
201 |
|
\begin{tabular}{|l|c|c|c|c|c|c|c|c|} |
202 |
|
\hline |
203 |
|
& True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or & Lepton $P_T$ & Z veto & \met $>$ 50& obs/pred \\ |
204 |
< |
& included & included & included & RECOSIM & and $\eta$ cuts & & & \\ \hline |
204 |
> |
& included & included & included & RECOSIM & and $\eta$ cuts & & & \\ \hline |
205 |
|
1&Y & N & N & GEN & N & N & N & 1.90 \\ |
206 |
|
2&Y & N & N & GEN & Y & N & N & 1.64 \\ |
207 |
|
3&Y & N & N & GEN & Y & Y & N & 1.59 \\ |
209 |
|
5&Y & N & N & RECOSIM & Y & Y & Y & 1.51 \\ |
210 |
|
6&Y & Y & N & RECOSIM & Y & Y & Y & 1.58 \\ |
211 |
|
7&Y & Y & Y & RECOSIM & Y & Y & Y & 1.38 \\ |
167 |
– |
%%%NOTE: updated value 1.18 -> 1.46 since 2/3 DY events have been removed by updated analysis selections, |
168 |
– |
%%%dpt/pt cut and general lepton veto |
212 |
|
\hline |
213 |
|
\end{tabular} |
214 |
|
\end{center} |
215 |
|
\end{table} |
216 |
|
|
217 |
|
|
218 |
+ |
\begin{table}[htb] |
219 |
+ |
\begin{center} |
220 |
+ |
\caption{\label{tab:victorysyst} |
221 |
+ |
{Summary of uncertainties in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton. |
222 |
+ |
In the first table, `up' and `down' refer to shifting the hadronic energy scale up and down by 5\%. In the second table, the quoted value |
223 |
+ |
refers to the amount of additional smearing of the MET, as discussed in the text. In the third table, the normalization of all backgrounds |
224 |
+ |
other than $t\bar{t} \to$~dilepton is varied. |
225 |
+ |
{\bf \color{ref} Should I remove `observed' and `predicted' and show only the ratio? }} |
226 |
+ |
|
227 |
+ |
\begin{tabular}{ lcccc } |
228 |
+ |
\hline |
229 |
+ |
MET scale & Predicted & Observed & Obs/pred \\ |
230 |
+ |
\hline |
231 |
+ |
nominal & 0.92 $ \pm $ 0.11 & 1.29 $ \pm $ 0.11 & 1.40 $ \pm $ 0.20 \\ |
232 |
+ |
up & 0.92 $ \pm $ 0.11 & 1.53 $ \pm $ 0.12 & 1.66 $ \pm $ 0.23 \\ |
233 |
+ |
down & 0.81 $ \pm $ 0.07 & 1.08 $ \pm $ 0.11 & 1.32 $ \pm $ 0.17 \\ |
234 |
+ |
\hline |
235 |
+ |
|
236 |
+ |
\hline |
237 |
+ |
MET smearing & Predicted & Observed & Obs/pred \\ |
238 |
+ |
\hline |
239 |
+ |
nominal & 0.92 $ \pm $ 0.11 & 1.29 $ \pm $ 0.11 & 1.40 $ \pm $ 0.20 \\ |
240 |
+ |
10\% & 0.90 $ \pm $ 0.11 & 1.30 $ \pm $ 0.11 & 1.44 $ \pm $ 0.21 \\ |
241 |
+ |
20\% & 0.84 $ \pm $ 0.07 & 1.36 $ \pm $ 0.11 & 1.61 $ \pm $ 0.19 \\ |
242 |
+ |
30\% & 1.05 $ \pm $ 0.18 & 1.32 $ \pm $ 0.11 & 1.27 $ \pm $ 0.24 \\ |
243 |
+ |
40\% & 0.85 $ \pm $ 0.07 & 1.37 $ \pm $ 0.11 & 1.61 $ \pm $ 0.19 \\ |
244 |
+ |
50\% & 1.08 $ \pm $ 0.18 & 1.36 $ \pm $ 0.11 & 1.26 $ \pm $ 0.24 \\ |
245 |
+ |
\hline |
246 |
+ |
|
247 |
+ |
\hline |
248 |
+ |
non-$t\bar{t} \to$~dilepton scale factor & Predicted & Observed & Obs/pred \\ |
249 |
+ |
\hline |
250 |
+ |
ttdil only & 0.77 $ \pm $ 0.07 & 1.05 $ \pm $ 0.06 & 1.36 $ \pm $ 0.14 \\ |
251 |
+ |
nominal & 0.92 $ \pm $ 0.11 & 1.29 $ \pm $ 0.11 & 1.40 $ \pm $ 0.20 \\ |
252 |
+ |
double non-ttdil yield & 1.06 $ \pm $ 0.18 & 1.52 $ \pm $ 0.20 & 1.43 $ \pm $ 0.30 \\ |
253 |
+ |
\hline |
254 |
+ |
\end{tabular} |
255 |
+ |
\end{center} |
256 |
+ |
\end{table} |
257 |
+ |
|
258 |
+ |
|
259 |
+ |
|
260 |
|
The largest discrepancy between prediction and observation occurs on the first |
261 |
|
line of Table~\ref{tab:victorybad}, {\em i.e.}, at the generator level with no |
262 |
|
cuts. We have verified that this effect is due to the polarization of |
279 |
|
We have studied this effect at the generator level using Alpgen. We find |
280 |
|
that the bias is at the few percent level. |
281 |
|
|
197 |
– |
%%%TO BE REPLACED |
198 |
– |
%Based on the results of Table~\ref{tab:victorybad}, we conclude that the |
199 |
– |
%naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to |
200 |
– |
%be corrected by a factor of {\color{red} $ K_{\rm{fudge}} =1.2 \pm 0.3$ |
201 |
– |
%(We still need to settle on thie exact value of this. |
202 |
– |
%For the 11 pb analysis it is taken as =1.)} . The quoted |
203 |
– |
%uncertainty is based on the stability of the Monte Carlo tests under |
204 |
– |
%variations of event selections, choices of \met algorithm, etc. |
205 |
– |
%For example, we find that observed/predicted changes by roughly 0.1 |
206 |
– |
%for each 1.5\% change in the average \met response. |
207 |
– |
|
282 |
|
Based on the results of Table~\ref{tab:victorybad}, we conclude that the |
283 |
< |
naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to |
284 |
< |
be corrected by a factor of $ K_C = X \pm Y$. |
211 |
< |
The value of this correction factor as well as the systematic uncertainty |
212 |
< |
will be assessed using 38X ttbar madgraph MC. In the following we use |
213 |
< |
$K_C = 1$ for simplicity. Based on previous MC studies we foresee a correction |
214 |
< |
factor of $K_C \approx 1.2 - 1.5$, and we will assess an uncertainty |
215 |
< |
based on the stability of the Monte Carlo tests under |
216 |
< |
variations of event selections, choices of \met algorithm, etc. |
217 |
< |
For example, we find that observed/predicted changes by roughly 0.1 |
218 |
< |
for each 1.5\% change in the average \met response. |
283 |
> |
naive data-driven background estimate based on $P_T{(\ell\ell)}$ needs to |
284 |
> |
be corrected by a factor of $ K_C = 1.4 \pm 0.2(stat)$. |
285 |
|
|
286 |
+ |
The 2 dominant sources of systematic uncertainty in $K_C$ are due to non-$t\bar{t} \to$~dilepton backgrounds, |
287 |
+ |
and the MET scale and resolution uncertainties. The impact of non-$t\bar{t}$-dilepton background is assessed |
288 |
+ |
by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton, as shown in Table~\ref{table_kc}. |
289 |
+ |
The systematic is assessed as the larger of the differences between the nominal $K_C$ value and the values |
290 |
+ |
obtained using only $t\bar{t} \to$~dilepton MC and obtained by doubling the non $t\bar{t} \to$~dilepton component, |
291 |
+ |
giving an uncertainty of $0.04$. |
292 |
+ |
|
293 |
+ |
The uncertainty in $K_C$ due to the MET scale uncertainty is assessed by varying the hadronic energy scale using |
294 |
+ |
the same method as in~\ref{} and checking how much $K_C$ changes, as summarized in Table~\ref{tab:victorysyst}. |
295 |
+ |
This gives an uncertainty of 0.3. We also assess the impact of the MET resolution uncertainty on $K_C$ by applying |
296 |
+ |
a random smearing to the MET. For each event, we determine the expected MET resolution based on the sumJetPt, and |
297 |
+ |
smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%. The results show that |
298 |
+ |
$K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty. |
299 |
|
|
300 |
+ |
Incorporating all the statistical and systematic uncertainties we find $K_C = 1.4 \pm 0.4$. |
301 |
|
|
302 |
|
\subsection{Signal Contamination} |
303 |
|
\label{sec:sigcont} |
336 |
|
\hline |
337 |
|
& Yield & ABCD & $P_T(\ell \ell)$ \\ |
338 |
|
\hline |
339 |
< |
SM only & 1.43 & 1.19 & 1.03 \\ |
340 |
< |
SM + LM0 & 7.90 & 4.23 & 2.35 \\ |
341 |
< |
SM + LM1 & 4.00 & 1.53 & 1.51 \\ |
339 |
> |
SM only & 1.29 & 1.25 & 0.92 \\ |
340 |
> |
SM + LM0 & 7.57 & 4.44 & 1.96 \\ |
341 |
> |
SM + LM1 & 3.85 & 1.60 & 1.43 \\ |
342 |
|
\hline |
343 |
|
\end{tabular} |
344 |
|
\end{center} |
345 |
|
\end{table} |
346 |
|
|
267 |
– |
|
268 |
– |
|
269 |
– |
%\begin{table}[htb] |
270 |
– |
%\begin{center} |
271 |
– |
%\caption{\label{tab:sigcontABCD} Effects of signal contamination |
272 |
– |
%for the background predictions of the ABCD method including LM0 or |
273 |
– |
%LM1. Results |
274 |
– |
%are normalized to 30 pb$^{-1}$.} |
275 |
– |
%\begin{tabular}{|c|c||c|c||c|c|} |
276 |
– |
%\hline |
277 |
– |
%SM & BG Prediction & SM$+$LM0 & BG Prediction & SM$+$LM1 & BG Prediction \\ |
278 |
– |
%Background & SM Only & Contribution & Including LM0 & Contribution & Including LM1 \\ \hline |
279 |
– |
%1.2 & 1.0 & 6.8 & 3.7 & 3.4 & 1.3 \\ |
280 |
– |
%\hline |
281 |
– |
%\end{tabular} |
282 |
– |
%\end{center} |
283 |
– |
%\end{table} |
284 |
– |
|
285 |
– |
%\begin{table}[htb] |
286 |
– |
%\begin{center} |
287 |
– |
%\caption{\label{tab:sigcontPT} Effects of signal contamination |
288 |
– |
%for the background predictions of the $P_T(\ell\ell)$ method including LM0 or |
289 |
– |
%LM1. Results |
290 |
– |
%are normalized to 30 pb$^{-1}$.} |
291 |
– |
%\begin{tabular}{|c|c||c|c||c|c|} |
292 |
– |
%\hline |
293 |
– |
%SM & BG Prediction & SM$+$LM0 & BG Prediction & SM$+$LM1 & BG Prediction \\ |
294 |
– |
%Background & SM Only & Contribution & Including LM0 & Contribution & Including LM1 \\ \hline |
295 |
– |
%1.2 & 1.0 & 6.8 & 2.2 & 3.4 & 1.5 \\ |
296 |
– |
%\hline |
297 |
– |
%\end{tabular} |
298 |
– |
%\end{center} |
299 |
– |
%\end{table} |
300 |
– |
|