ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.28 by benhoob, Thu Dec 2 14:27:31 2010 UTC vs.
Revision 1.33 by benhoob, Fri Dec 3 14:15:04 2010 UTC

# Line 23 | Line 23 | detector.
23  
24   We find that in $t\bar{t}$ events SumJetPt and
25   \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 < as demonstrated in Figure~\ref{fig:uncor}.
26 > as demonstrated in Fig.~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
# Line 48 | Line 48 | intervals 4.5-6.5, 6.5-8.5 and $>$8.5, r
48  
49   \begin{figure}[tb]
50   \begin{center}
51 < \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
51 > \includegraphics[width=0.75\linewidth]{ttdil_uncor_38X.png}
52   \caption{\label{fig:abcdMC}\protect Distributions of MET$/\sqrt{\rm SumJetPt}$ vs.
53 < SumJetPt for SM Monte Carlo.  Here we also show our choice of ABCD regions.}
53 > SumJetPt for SM Monte Carlo.  Here we also show our choice of ABCD regions. The correlation coefficient
54 > ${\rm corr_{XY}}$ is computed for events falling in the ABCD regions.}
55   \end{center}
56   \end{figure}
57  
58  
59   Our choice of ABCD regions is shown in Figure~\ref{fig:abcdMC}.
60   The signal region is region D.  The expected number of events
61 < in the four regions for the SM Monte Carlo, as well as the BG
62 < prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
63 < luminosity of 35 pb$^{-1}$.  The ABCD method with chosen boundaries is accurate
64 < to about 20\%. As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties
65 < by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty,
66 < which we take as $\pm$5\% for SumJetPt and $\pm$2.5\% for MET/$\sqrt{\rm SumJetPt}$, since the
67 < uncertainty on this quantity partially cancels due to the fact that it is a ratio of correlated
68 < quantities. Based on these studies we assess a correction factor $k_{ABCD} = 1.2 \pm 0.2$ to the
69 < predicted yield using the ABCD method.
61 > in the four regions for the SM Monte Carlo, as well as the background
62 > prediction A $\times$ C / B are given in Table~\ref{tab:abcdMC} for an integrated
63 > luminosity of 35 pb$^{-1}$. In Table~\ref{tab:abcdsyst}, we test the stability of
64 > observed/predicted with respect to variations in the ABCD boundaries.
65 > Based on the results in Tables~\ref{tab:abcdMC} and~\ref{tab:abcdsyst}, we assess
66 > a systematic uncertainty of 20\% on the prediction of the ABCD method.
67 >
68 > %As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties
69 > %by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty,
70 > %which we take as $\pm$5\% for SumJetPt and $\pm$2.5\% for MET/$\sqrt{\rm SumJetPt}$, since the
71 > %uncertainty on this quantity partially cancels due to the fact that it is a ratio of correlated
72 > %quantities. Based on these studies we assess a correction factor $k_{ABCD} = 1.2 \pm 0.2$ to the
73 > %predicted yield using the ABCD method.
74  
75  
76   %{\color{red} Avi wants some statement about stability
# Line 109 | Line 114 | respectively.}
114   \hline
115   $x_1$   &   $x_2$ & $y_1$   &   $y_2$ & Observed/Predicted \\
116   \hline
117 < nominal & nominal & nominal & nominal & $1.20 \pm 0.12$    \\
118 < +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.38 \pm 0.15$    \\
119 < +5\%    & +5\%    & nominal & nominal & $1.31 \pm 0.14$    \\
120 < nominal & nominal & +2.5\%  & +2.5\%  & $1.25 \pm 0.13$    \\
121 < nominal & +5\%    & nominal & +2.5\%  & $1.32 \pm 0.14$    \\
122 < nominal & -5\%    & nominal & -2.5\%  & $1.16 \pm 0.09$    \\
123 < -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.21 \pm 0.11$    \\
124 < +5\%    & +5\%    & -2.5\%  & -2.5\%  & $1.26 \pm 0.12$    \\
117 > nominal & nominal & nominal & nominal & $1.03 \pm 0.10$    \\
118 > +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.13 \pm 0.13$    \\
119 > +5\%    & +5\%    & nominal & nominal & $1.08 \pm 0.12$    \\
120 > nominal & nominal & +2.5\%  & +2.5\%  & $1.07 \pm 0.11$    \\
121 > nominal & +5\%    & nominal & +2.5\%  & $1.09 \pm 0.12$    \\
122 > nominal & -5\%    & nominal & -2.5\%  & $0.98 \pm 0.08$    \\
123 > -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.03 \pm 0.09$    \\
124 > +5\%    & +5\%    & -2.5\%  & -2.5\%  & $1.03 \pm 0.11$    \\
125   \hline
126   \end{tabular}
127   \end{center}
# Line 142 | Line 147 | cut of 50 GeV, the rescaling factor is o
147  
148   \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
149   \begin{center}
150 < $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~}$
150 > $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~} = 1.52$
151   \end{center}
152  
153  
149 Monte Carlo studies give values of $K$ that are typically between 1.5 and 1.6,
150 depending on selection details.  
154   %%%TO BE REPLACED
155   %Given the integrated luminosity of the
156   %present dataset, the determination of $K$ in data is severely statistics
# Line 195 | Line 198 | The results are summarized in Table~\ref
198   \begin{table}[htb]
199   \begin{center}
200   \caption{\label{tab:victorybad}
201 < {\bf \color{red} Need to either update this with 38X MC  or remove it }
201 > {\bf \color{red} Should we either update this with 38X MC  or remove it?? }
202   Test of the data driven method in Monte Carlo
203   under different assumptions.  See text for details.}
204   \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
# Line 218 | Line 221 | under different assumptions.  See text f
221   \begin{table}[htb]
222   \begin{center}
223   \caption{\label{tab:victorysyst}
224 < {Summary of uncertainties in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton.
224 > Summary of uncertainties in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton.
225   In the first table, `up' and `down' refer to shifting the hadronic energy scale up and down by 5\%. In the second table, the quoted value
226   refers to the amount of additional smearing of the MET, as discussed in the text. In the third table, the normalization of all backgrounds
227   other than $t\bar{t} \to$~dilepton is varied.
228 < {\bf \color{ref} Should I remove `observed' and `predicted' and show only the ratio? }}
228 > {\bf \color{red} Should I remove `observed' and `predicted' and show only the ratio? }}
229  
230   \begin{tabular}{ lcccc }
231   \hline
# Line 232 | Line 235 | other than $t\bar{t} \to$~dilepton is va
235              up    &  0.92 $ \pm $ 0.11   &  1.53 $ \pm $ 0.12   &  1.66 $ \pm $ 0.23   \\
236            down    &  0.81 $ \pm $ 0.07   &  1.08 $ \pm $ 0.11   &  1.32 $ \pm $ 0.17   \\
237   \hline
235
236 \hline
238     MET smearing   &      Predicted       &       Observed        &       Obs/pred      \\
239   \hline
240          nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
# Line 243 | Line 244 | other than $t\bar{t} \to$~dilepton is va
244             40\%   &  0.85 $ \pm $ 0.07   &  1.37 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
245             50\%   &  1.08 $ \pm $ 0.18   &  1.36 $ \pm $ 0.11   &  1.26 $ \pm $ 0.24   \\
246   \hline
246
247 \hline
247    non-$t\bar{t} \to$~dilepton scale factor   &          Predicted   &           Observed   &           Obs/pred   \\
248   \hline
249     ttdil only                                &  0.77 $ \pm $ 0.07   &  1.05 $ \pm $ 0.06   &  1.36 $ \pm $ 0.14   \\
# Line 279 | Line 278 | not include effects of spin correlations
278   We have studied this effect at the generator level using Alpgen.  We find
279   that the bias is at the few percent level.
280  
281 < Based on the results of Table~\ref{tab:victorybad}, we conclude that the
281 > Based on the results of Table~\ref{tab:victorysyst}, we conclude that the
282   naive data-driven background estimate based on $P_T{(\ell\ell)}$ needs to
283 < be corrected by a factor of $ K_C = 1.4 \pm 0.2(stat)$.
283 > be corrected by a factor of $ K_C = 1.4 \pm 0.2({\rm stat})$.
284  
285 < The 2 dominant sources of systematic uncertainty in $K_C$ are due to non-$t\bar{t} \to$~dilepton backgrounds,
286 < and the MET scale and resolution uncertainties. The impact of non-$t\bar{t}$-dilepton background is assessed
287 < by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton, as shown in Table~\ref{table_kc}.
288 < The systematic is assessed as the larger of the differences between the nominal $K_C$ value and the values
285 > The dominant sources of systematic uncertainty in $K_C$ are due to non-$t\bar{t} \to$~dilepton backgrounds,
286 > and the MET scale and resolution uncertainties, as summarized in Table~\ref{tab:victorysyst}.
287 > The impact of non-$t\bar{t}$-dilepton background is assessed
288 > by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton.
289 > The uncertainty is assessed as the larger of the differences between the nominal $K_C$ value and the values
290   obtained using only $t\bar{t} \to$~dilepton MC and obtained by doubling the non $t\bar{t} \to$~dilepton component,
291   giving an uncertainty of $0.04$.
292  
293   The uncertainty in $K_C$ due to the MET scale uncertainty is assessed by varying the hadronic energy scale using
294 < the same method as in~\ref{} and checking how much $K_C$ changes, as summarized in Table~\ref{tab:victorysyst}.
295 < This gives an uncertainty of 0.3. We also assess the impact of the MET resolution uncertainty on $K_C$ by applying
296 < a random smearing to the MET. For each event, we determine the expected MET resolution based on the sumJetPt, and
297 < smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%. The results show that
298 < $K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty.
294 > the same method as in~\cite{ref:top}, giving an uncertainty of 0.3. We also assess the impact of the MET resolution
295 > uncertainty on $K_C$ by applying a random smearing to the MET. For each event, we determine the expected MET resolution
296 > based on the sumJetPt, and smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%.
297 > The results show that $K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty.
298  
299   Incorporating all the statistical and systematic uncertainties we find $K_C = 1.4 \pm 0.4$.
300  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines