ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.32 by benhoob, Thu Dec 2 17:48:33 2010 UTC vs.
Revision 1.38 by benhoob, Wed Dec 8 12:18:30 2010 UTC

# Line 42 | Line 42 | sumJetPt plane to estimate the backgroun
42   \caption{\label{fig:uncor}\protect Distributions of SumJetPt
43   in MC $t\bar{t}$ events for different intervals of
44   MET$/\sqrt{\rm SumJetPt}$. h1, h2, and h3 refer to the MET$/\sqrt{\rm SumJetPt}$
45 < intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively.}
45 > intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively. }
46   \end{center}
47   \end{figure}
48  
# Line 60 | Line 60 | Our choice of ABCD regions is shown in F
60   The signal region is region D.  The expected number of events
61   in the four regions for the SM Monte Carlo, as well as the background
62   prediction A $\times$ C / B are given in Table~\ref{tab:abcdMC} for an integrated
63 < luminosity of 35 pb$^{-1}$.  The ABCD method with chosen boundaries is accurate
64 < to about 20\%, and we assess a corresponding systematic uncertainty
65 < {\bf \color{red} More detail needed here???}
63 > luminosity of 34.0 pb$^{-1}$. In Table~\ref{tab:abcdsyst}, we test the stability of
64 > observed/predicted with respect to variations in the ABCD boundaries.
65 > Based on the results in Tables~\ref{tab:abcdMC} and~\ref{tab:abcdsyst}, we assess
66 > a systematic uncertainty of 20\% on the prediction of the ABCD method.
67  
68   %As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties
69   %by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty,
# Line 79 | Line 80 | to about 20\%, and we assess a correspon
80   \begin{table}[ht]
81   \begin{center}
82   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
83 < 35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
83 > 34.0~pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
84   the signal region given by A $\times$ C / B. Here `SM other' is the sum
85   of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
86   $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
87   \begin{tabular}{lccccc}
88 + %%%official json v3, 38X MC (D6T ttbar and DY)
89   \hline
90 <              sample   &                   A   &                   B   &                   C   &                   D   &                      A $\times$ C / B  \\
90 >              sample                     &                   A   &                   B   &                   C   &                   D   &                PRED  \\
91   \hline
92 < $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &   8.27  $\pm$  0.18   &  32.16  $\pm$  0.35   &   4.69  $\pm$  0.13   &   1.05  $\pm$  0.06   &   1.21  $\pm$  0.04  \\
93 < $Z^0 \rightarrow \ell^{+}\ell^{-}$       &   0.22  $\pm$  0.11   &   1.54  $\pm$  0.29   &   0.05  $\pm$  0.05   &   0.16  $\pm$  0.09   &   0.01  $\pm$  0.01  \\
94 <            SM other                     &   0.54  $\pm$  0.03   &   2.28  $\pm$  0.12   &   0.23  $\pm$  0.03   &   0.07  $\pm$  0.01   &   0.05  $\pm$  0.01  \\
92 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &   8.44  $\pm$  0.18   &  32.83  $\pm$  0.35   &   4.78  $\pm$  0.14   &   1.07  $\pm$  0.06   &   1.23  $\pm$  0.05  \\
93 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &   0.17  $\pm$  0.08   &   1.18  $\pm$  0.22   &   0.04  $\pm$  0.04   &   0.12  $\pm$  0.07   &   0.01  $\pm$  0.01  \\
94 >            SM other                     &   0.53  $\pm$  0.03   &   2.26  $\pm$  0.11   &   0.23  $\pm$  0.03   &   0.07  $\pm$  0.01   &   0.05  $\pm$  0.01  \\
95   \hline
96 <         total SM MC                     &   9.03  $\pm$  0.21   &  35.97  $\pm$  0.46   &   4.97  $\pm$  0.15   &   1.29  $\pm$  0.11   &   1.25  $\pm$  0.05  \\
96 >         total SM MC                     &   9.14  $\pm$  0.20   &  36.26  $\pm$  0.43   &   5.05  $\pm$  0.14   &   1.27  $\pm$  0.10   &   1.27  $\pm$  0.05  \\
97   \hline
98   \end{tabular}
99   \end{center}
# Line 102 | Line 104 | $Z^0 \rightarrow \ell^{+}\ell^{-}$
104   \begin{table}[ht]
105   \begin{center}
106   \caption{\label{tab:abcdsyst}
105 {\bf \color{red} Do we need this study at all? Observed/predicted is consistent within stat uncertainties as the boundaries are varied- is it enough to simply state this fact in the text??? }
107   Results of the systematic study of the ABCD method by varying the boundaries
108   between the ABCD regions shown in Fig.~\ref{fig:abcdMC}. Here $x_1$ is the lower SumJetPt boundary and
109   $x_2$ is the boundary separating regions A and B from C and D, their nominal values are 125 and 300~GeV,
# Line 113 | Line 114 | respectively.}
114   \hline
115   $x_1$   &   $x_2$ & $y_1$   &   $y_2$ & Observed/Predicted \\
116   \hline
117 < nominal & nominal & nominal & nominal & $1.20 \pm 0.12$    \\
118 < +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.38 \pm 0.15$    \\
119 < +5\%    & +5\%    & nominal & nominal & $1.31 \pm 0.14$    \\
120 < nominal & nominal & +2.5\%  & +2.5\%  & $1.25 \pm 0.13$    \\
121 < nominal & +5\%    & nominal & +2.5\%  & $1.32 \pm 0.14$    \\
122 < nominal & -5\%    & nominal & -2.5\%  & $1.16 \pm 0.09$    \\
123 < -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.21 \pm 0.11$    \\
124 < +5\%    & +5\%    & -2.5\%  & -2.5\%  & $1.26 \pm 0.12$    \\
117 >
118 > nominal & nominal & nominal & nominal & $1.00 \pm 0.08$    \\
119 >
120 > +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.08 \pm 0.11$    \\
121 >
122 > +5\%    & +5\%    & nominal & nominal & $1.04 \pm 0.10$    \\
123 >
124 > nominal & nominal & +2.5\%  & +2.5\%  & $1.03 \pm 0.09$    \\
125 >
126 > nominal & +5\%    & nominal & +2.5\%  & $1.05 \pm 0.10$    \\
127 >
128 > nominal & -5\%    & nominal & -2.5\%  & $0.95 \pm 0.07$    \\
129 >
130 > -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.00 \pm 0.08$    \\
131 >
132 > +5\%    & +5\%    & -2.5\%  & -2.5\%  & $0.98 \pm 0.09$    \\
133   \hline
134   \end{tabular}
135   \end{center}
# Line 146 | Line 155 | cut of 50 GeV, the rescaling factor is o
155  
156   \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
157   \begin{center}
158 < $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~} = 1.52$
158 > $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~} = 1.5$
159   \end{center}
160  
161  
# Line 197 | Line 206 | The results are summarized in Table~\ref
206   \begin{table}[htb]
207   \begin{center}
208   \caption{\label{tab:victorybad}
200 {\bf \color{red} Should we either update this with 38X MC  or remove it?? }
209   Test of the data driven method in Monte Carlo
210 < under different assumptions.  See text for details.}
210 > under different assumptions, evaluated using Spring10 MC.  See text for details.}
211   \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
212   \hline
213   & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & Z veto & \met $>$ 50& obs/pred \\
# Line 220 | Line 228 | under different assumptions.  See text f
228   \begin{table}[htb]
229   \begin{center}
230   \caption{\label{tab:victorysyst}
231 < Summary of uncertainties in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton.
231 > Summary of variations in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton.
232   In the first table, `up' and `down' refer to shifting the hadronic energy scale up and down by 5\%. In the second table, the quoted value
233   refers to the amount of additional smearing of the MET, as discussed in the text. In the third table, the normalization of all backgrounds
234 < other than $t\bar{t} \to$~dilepton is varied.
227 < {\bf \color{red} Should I remove `observed' and `predicted' and show only the ratio? }}
228 <
234 > other than $t\bar{t} \to$~dilepton is varied. }
235   \begin{tabular}{ lcccc }
236   \hline
237         MET scale  &      Predicted       &       Observed       &       Obs/pred       \\
238   \hline
239 <        nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
240 <            up    &  0.92 $ \pm $ 0.11   &  1.53 $ \pm $ 0.12   &  1.66 $ \pm $ 0.23   \\
241 <          down    &  0.81 $ \pm $ 0.07   &  1.08 $ \pm $ 0.11   &  1.32 $ \pm $ 0.17   \\
242 < \hline
243 <   MET smearing   &      Predicted       &       Observed        &       Obs/pred      \\
244 < \hline
245 <        nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
246 <           10\%   &  0.90 $ \pm $ 0.11   &  1.30 $ \pm $ 0.11   &  1.44 $ \pm $ 0.21   \\
247 <           20\%   &  0.84 $ \pm $ 0.07   &  1.36 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
248 <           30\%   &  1.05 $ \pm $ 0.18   &  1.32 $ \pm $ 0.11   &  1.27 $ \pm $ 0.24   \\
249 <           40\%   &  0.85 $ \pm $ 0.07   &  1.37 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
250 <           50\%   &  1.08 $ \pm $ 0.18   &  1.36 $ \pm $ 0.11   &  1.26 $ \pm $ 0.24   \\
251 < \hline
252 <  non-$t\bar{t} \to$~dilepton scale factor   &          Predicted   &           Observed   &           Obs/pred   \\
253 < \hline
254 <   ttdil only                                &  0.77 $ \pm $ 0.07   &  1.05 $ \pm $ 0.06   &  1.36 $ \pm $ 0.14   \\
255 <   nominal                                   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
256 <   double non-ttdil yield                    &  1.06 $ \pm $ 0.18   &  1.52 $ \pm $ 0.20   &  1.43 $ \pm $ 0.30   \\
239 >        nominal   &  0.92 $ \pm $ 0.09   &  1.27 $ \pm $ 0.10   &   1.39 $ \pm $ 0.18  \\
240 >            up    &  0.90 $ \pm $ 0.09   &  1.58 $ \pm $ 0.10   &   1.75 $ \pm $ 0.21  \\
241 >          down    &  0.70 $ \pm $ 0.06   &  0.96 $ \pm $ 0.09   &   1.37 $ \pm $ 0.18  \\
242 > \hline
243 >   MET smearing   &      Predicted       &       Observed       &       Obs/pred       \\
244 > \hline
245 >        nominal   &  0.92 $ \pm $ 0.09   &  1.27 $ \pm $ 0.10   &   1.39 $ \pm $ 0.18  \\
246 >           10\%   &  0.88 $ \pm $ 0.09   &  1.28 $ \pm $ 0.10   &   1.47 $ \pm $ 0.19  \\
247 >           20\%   &  0.87 $ \pm $ 0.09   &  1.26 $ \pm $ 0.10   &   1.44 $ \pm $ 0.19  \\
248 >           30\%   &  1.03 $ \pm $ 0.17   &  1.33 $ \pm $ 0.10   &   1.29 $ \pm $ 0.23  \\
249 >           40\%   &  0.88 $ \pm $ 0.09   &  1.36 $ \pm $ 0.10   &   1.55 $ \pm $ 0.20  \\
250 >           50\%   &  0.80 $ \pm $ 0.07   &  1.39 $ \pm $ 0.10   &   1.73 $ \pm $ 0.19  \\
251 > \hline
252 >  non-$t\bar{t} \to$~dilepton bkg   &       Predicted   &           Observed   &           Obs/pred   \\
253 > \hline
254 >   ttdil only                       &   0.79 $ \pm $ 0.07   &   1.07 $ \pm $ 0.06   &   1.36 $ \pm $ 0.14   \\
255 >   nominal                          &   0.92 $ \pm $ 0.09   &   1.27 $ \pm $ 0.10   &   1.39 $ \pm $ 0.18   \\
256 >   double non-ttdil yield           &   1.04 $ \pm $ 0.15   &   1.47 $ \pm $ 0.16   &   1.40 $ \pm $ 0.25   \\
257   \hline
258   \end{tabular}
259   \end{center}
260   \end{table}
261  
256
257
262   The largest discrepancy between prediction and observation occurs on the first
263   line of Table~\ref{tab:victorybad}, {\em i.e.}, at the generator level with no
264   cuts.  We have verified that this effect is due to the polarization of
# Line 287 | Line 291 | The impact of non-$t\bar{t}$-dilepton ba
291   by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton.
292   The uncertainty is assessed as the larger of the differences between the nominal $K_C$ value and the values
293   obtained using only $t\bar{t} \to$~dilepton MC and obtained by doubling the non $t\bar{t} \to$~dilepton component,
294 < giving an uncertainty of $0.04$.
294 > giving an uncertainty of $0.03$.
295  
296   The uncertainty in $K_C$ due to the MET scale uncertainty is assessed by varying the hadronic energy scale using
297 < the same method as in~\cite{ref:top}, giving an uncertainty of 0.3. We also assess the impact of the MET resolution
297 > the same method as in~\cite{ref:top}, giving an uncertainty of 0.36.
298 > We also assess the impact of the MET resolution
299   uncertainty on $K_C$ by applying a random smearing to the MET. For each event, we determine the expected MET resolution
300   based on the sumJetPt, and smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%.
301   The results show that $K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty.
# Line 329 | Line 334 | presence of the signal.
334   \caption{\label{tab:sigcont} Effects of signal contamination
335   for the two data-driven background estimates. The three columns give
336   the expected yield in the signal region and the background estimates
337 < using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.}
337 > using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 34.0~pb$^{-1}$.}
338   \begin{tabular}{lccc}
339   \hline
340              &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
341   \hline
342 < SM only     &       1.29      &      1.25    &           0.92    \\
343 < SM + LM0    &       7.57      &      4.44    &           1.96    \\
344 < SM + LM1    &       3.85      &      1.60    &           1.43    \\
342 > SM only     &       1.3      &      1.3    &       0.9        \\
343 > SM + LM0    &       7.4      &      4.4    &       1.9        \\
344 > SM + LM1    &       3.8      &      1.6    &       1.4        \\
345 > %SM only     &       1.27      &      1.27    &       0.92        \\
346 > %SM + LM0    &       7.39      &      4.38    &       1.93        \\
347 > %SM + LM1    &       3.77      &      1.62    &       1.41        \\
348   \hline
349   \end{tabular}
350   \end{center}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines