ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.4 by claudioc, Mon Nov 1 17:52:52 2010 UTC vs.
Revision 1.38 by benhoob, Wed Dec 8 12:18:30 2010 UTC

# Line 2 | Line 2
2   \label{sec:datadriven}
3   We have developed two data-driven methods to
4   estimate the background in the signal region.
5 < The first one explouts the fact that
6 < \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
5 > The first one exploits the fact that
6 > SumJetPt and \met$/\sqrt{\rm SumJetPt}$ are nearly
7   uncorrelated for the $t\bar{t}$ background
8   (Section~\ref{sec:abcd});  the second one
9   is based on the fact that in $t\bar{t}$ the
# Line 12 | Line 12 | nearly the same as the $P_T$ of the pair
12   from $W$-decays, which is reconstructed as \met in the
13   detector.
14  
15 < In 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
16 < the signal region.  The expectations from the LMO
17 < and LM1 SUSY benchmark points are 15.1 and
18 < 6.0 events respectively. {\color{red} I took these
19 < numbers from the twiki, rescaling from 11.06 to 30/pb.
20 < They seem too large...are they really right?}
15 >
16 > %{\color{red} I took these
17 > %numbers from the twiki, rescaling from 11.06 to 30/pb.
18 > %They seem too large...are they really right?}
19  
20  
21   \subsection{ABCD method}
22   \label{sec:abcd}
23  
24 < We find that in $t\bar{t}$ events \met and
25 < \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated.
26 < This is demonstrated in Figure~\ref{fig:uncor}.
24 > We find that in $t\bar{t}$ events SumJetPt and
25 > \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 > as demonstrated in Fig.~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
30 < \begin{figure}[tb]
30 > %\begin{figure}[bht]
31 > %\begin{center}
32 > %\includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
33 > %\caption{\label{fig:uncor}\protect Distributions of SumJetPt
34 > %in MC $t\bar{t}$ events for different intervals of
35 > %MET$/\sqrt{\rm SumJetPt}$.}
36 > %\end{center}
37 > %\end{figure}
38 >
39 > \begin{figure}[bht]
40   \begin{center}
41 < \includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
41 > \includegraphics[width=0.75\linewidth]{uncor.png}
42   \caption{\label{fig:uncor}\protect Distributions of SumJetPt
43   in MC $t\bar{t}$ events for different intervals of
44 < MET$/\sqrt{\rm SumJetPt}$.}
44 > MET$/\sqrt{\rm SumJetPt}$. h1, h2, and h3 refer to the MET$/\sqrt{\rm SumJetPt}$
45 > intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively. }
46   \end{center}
47   \end{figure}
48  
49 < \begin{figure}[bt]
49 > \begin{figure}[tb]
50   \begin{center}
51 < \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
52 < \caption{\label{fig:abcdMC}\protect Distributions of SumJetPt
53 < vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo.  Here we also
54 < show our choice of ABCD regions. {\color{red} Derek, I
47 < do not know if this is SM or $t\bar{t}$ only.}}
51 > \includegraphics[width=0.75\linewidth]{ttdil_uncor_38X.png}
52 > \caption{\label{fig:abcdMC}\protect Distributions of MET$/\sqrt{\rm SumJetPt}$ vs.
53 > SumJetPt for SM Monte Carlo.  Here we also show our choice of ABCD regions. The correlation coefficient
54 > ${\rm corr_{XY}}$ is computed for events falling in the ABCD regions.}
55   \end{center}
56   \end{figure}
57  
58  
59   Our choice of ABCD regions is shown in Figure~\ref{fig:abcdMC}.
60   The signal region is region D.  The expected number of events
61 < in the four regions for the SM Monte Carlo, as well as the BG
62 < prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
63 < luminosity of 30 pb$^{-1}$.  The ABCD method is accurate
64 < to about 10\%. {\color{red} Avi wants some statement about stability
65 < wrt changes in regions.  I am not sure that we have done it and
66 < I am not sure it is necessary (Claudio).}
61 > in the four regions for the SM Monte Carlo, as well as the background
62 > prediction A $\times$ C / B are given in Table~\ref{tab:abcdMC} for an integrated
63 > luminosity of 34.0 pb$^{-1}$. In Table~\ref{tab:abcdsyst}, we test the stability of
64 > observed/predicted with respect to variations in the ABCD boundaries.
65 > Based on the results in Tables~\ref{tab:abcdMC} and~\ref{tab:abcdsyst}, we assess
66 > a systematic uncertainty of 20\% on the prediction of the ABCD method.
67 >
68 > %As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties
69 > %by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty,
70 > %which we take as $\pm$5\% for SumJetPt and $\pm$2.5\% for MET/$\sqrt{\rm SumJetPt}$, since the
71 > %uncertainty on this quantity partially cancels due to the fact that it is a ratio of correlated
72 > %quantities. Based on these studies we assess a correction factor $k_{ABCD} = 1.2 \pm 0.2$ to the
73 > %predicted yield using the ABCD method.
74 >
75 >
76 > %{\color{red} Avi wants some statement about stability
77 > %wrt changes in regions.  I am not sure that we have done it and
78 > %I am not sure it is necessary (Claudio).}
79  
80 < \begin{table}[htb]
80 > \begin{table}[ht]
81   \begin{center}
82   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
83 < 30 pb$^{-1}$ in the ABCD regions.}
84 < \begin{tabular}{|l|c|c|c|c||c|}
83 > 34.0~pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
84 > the signal region given by A $\times$ C / B. Here `SM other' is the sum
85 > of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
86 > $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
87 > \begin{tabular}{lccccc}
88 > %%%official json v3, 38X MC (D6T ttbar and DY)
89 > \hline
90 >              sample                     &                   A   &                   B   &                   C   &                   D   &                PRED  \\
91 > \hline
92 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &   8.44  $\pm$  0.18   &  32.83  $\pm$  0.35   &   4.78  $\pm$  0.14   &   1.07  $\pm$  0.06   &   1.23  $\pm$  0.05  \\
93 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &   0.17  $\pm$  0.08   &   1.18  $\pm$  0.22   &   0.04  $\pm$  0.04   &   0.12  $\pm$  0.07   &   0.01  $\pm$  0.01  \\
94 >            SM other                     &   0.53  $\pm$  0.03   &   2.26  $\pm$  0.11   &   0.23  $\pm$  0.03   &   0.07  $\pm$  0.01   &   0.05  $\pm$  0.01  \\
95 > \hline
96 >         total SM MC                     &   9.14  $\pm$  0.20   &  36.26  $\pm$  0.43   &   5.05  $\pm$  0.14   &   1.27  $\pm$  0.10   &   1.27  $\pm$  0.05  \\
97 > \hline
98 > \end{tabular}
99 > \end{center}
100 > \end{table}
101 >
102 >
103 >
104 > \begin{table}[ht]
105 > \begin{center}
106 > \caption{\label{tab:abcdsyst}
107 > Results of the systematic study of the ABCD method by varying the boundaries
108 > between the ABCD regions shown in Fig.~\ref{fig:abcdMC}. Here $x_1$ is the lower SumJetPt boundary and
109 > $x_2$ is the boundary separating regions A and B from C and D, their nominal values are 125 and 300~GeV,
110 > respectively. $y_1$ is the lower MET/$\sqrt{\rm SumJetPt}$ boundary and
111 > $y_2$ is the boundary separating regions B and C from A and D, their nominal values are 4.5 and 8.5~GeV$^{1/2}$,
112 > respectively.}
113 > \begin{tabular}{cccc|c}
114 > \hline
115 > $x_1$   &   $x_2$ & $y_1$   &   $y_2$ & Observed/Predicted \\
116 > \hline
117 >
118 > nominal & nominal & nominal & nominal & $1.00 \pm 0.08$    \\
119 >
120 > +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.08 \pm 0.11$    \\
121 >
122 > +5\%    & +5\%    & nominal & nominal & $1.04 \pm 0.10$    \\
123 >
124 > nominal & nominal & +2.5\%  & +2.5\%  & $1.03 \pm 0.09$    \\
125 >
126 > nominal & +5\%    & nominal & +2.5\%  & $1.05 \pm 0.10$    \\
127 >
128 > nominal & -5\%    & nominal & -2.5\%  & $0.95 \pm 0.07$    \\
129 >
130 > -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.00 \pm 0.08$    \\
131 >
132 > +5\%    & +5\%    & -2.5\%  & -2.5\%  & $0.98 \pm 0.09$    \\
133   \hline
67 Sample   & A   & B    & C   & D   & AC/D \\ \hline
68 ttdil    & 6.9 & 28.6 & 4.2 & 1.0 & 1.0  \\
69 Zjets    & 0.0 & 1.3  & 0.1 & 0.1 & 0.0  \\
70 Other SM & 0.5 & 2.0  & 0.1 & 0.1 & 0.0  \\ \hline
71 total MC & 7.4 & 31.9 & 4.4 & 1.2 & 1.0 \\ \hline
134   \end{tabular}
135   \end{center}
136   \end{table}
# Line 89 | Line 151 | In practice one has to rescale the resul
151   to account for the fact that any dilepton selection must include a
152   moderate \met cut in order to reduce Drell Yan backgrounds.  This
153   is discussed in Section 5.3 of Reference~\cite{ref:ourvictory}; for a \met
154 < cut of 50 GeV, the rescaling factor is obtained from the data as
154 > cut of 50 GeV, the rescaling factor is obtained from the MC as
155  
156   \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
157   \begin{center}
158 < $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~}$
158 > $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~} = 1.5$
159   \end{center}
160  
161  
162 < Monte Carlo studies give values of $K$ that are typically between 1.5 and 1.6,
163 < depending on selection details.
162 > %%%TO BE REPLACED
163 > %Given the integrated luminosity of the
164 > %present dataset, the determination of $K$ in data is severely statistics
165 > %limited.  Thus, we take $K$ from $t\bar{t}$ Monte Carlo as
166 >
167 > %\begin{center}
168 > %$ K_{MC} = \frac{\int_0^{\infty} {\cal N}(\met)~~d\met~}{\int_{50}^{\infty} {\cal N}(\met)~~d\met~}$
169 > %\end{center}
170 >
171 > %\noindent {\color{red} For the 11 pb result we have used $K$ from data.}
172  
173   There are several effects that spoil the correspondance between \met and
174   $P_T(\ell\ell)$:
175   \begin{itemize}
176   \item $Ws$ in top events are polarized.  Neutrinos are emitted preferentially
177 < forward in the $W$ rest frame, thus the $P_T(\nu\nu)$ distribution is harder
177 > parallel to the $W$ velocity while charged leptons are emitted prefertially
178 > anti-parallel. Thus the $P_T(\nu\nu)$ distribution is harder
179   than the $P_T(\ell\ell)$ distribution for top dilepton events.
180   \item The lepton selections results in $P_T$ and $\eta$ cuts on the individual
181   leptons that have no simple correspondance to the neutrino requirements.
182   \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
183   neutrinos which is only partially compensated by the $K$ factor above.
184   \item The \met resolution is much worse than the dilepton $P_T$ resolution.
185 < When convoluted with a falling spectrum in the tails of \met, this result
185 > When convoluted with a falling spectrum in the tails of \met, this results
186   in a harder spectrum for \met than the original $P_T(\nu\nu)$.
187   \item The \met response in CMS is not exactly 1.  This causes a distortion
188   in the \met distribution that is not present in the $P_T(\ell\ell)$ distribution.
# Line 122 | Line 193 | of $P_T(\ell\ell)$ and $P_T(\nu\nu)$ do
193   sources.  These events can affect the background prediction.  Particularly
194   dangerous are high $P_T$ Drell Yan events that barely pass the \met$>$ 50
195   GeV selection.  They will tend to push the data-driven background prediction up.
196 + Therefore we estimate the number of DY events entering the background prediction
197 + using the $R_{out/in}$ method as described in Sec.~\ref{sec:othBG}.
198   \end{itemize}
199  
200   We have studied these effects in SM Monte Carlo, using a mixture of generator and
# Line 132 | Line 205 | The results are summarized in Table~\ref
205  
206   \begin{table}[htb]
207   \begin{center}
208 < \caption{\label{tab:victorybad} Test of the data driven method in Monte Carlo
209 < under different assumptions.  See text for details.}
210 < \begin{tabular}{|l|c|c|c|c|c|c|c|}
211 < \hline
212 < & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & \met $>$ 50& obs/pred \\
213 < & included                 & included  & included & RECOSIM & and $\eta$ cuts &      &     \\ \hline
214 < 1&Y                        &     N     &   N      &  GEN    &   N             &   N  &       \\
215 < 2&Y                        &     N     &   N      &  GEN    &   Y             &   N  &   \\
216 < 3&Y                        &     N     &   N      &  GEN    &   Y             &   Y  &   \\
217 < 4&Y                        &     N     &   N      & RECOSIM &   Y             &   Y  &   \\
218 < 5&Y                        &     Y     &   N      & RECOSIM &   Y             &   Y  &   \\
219 < 6&Y                        &     Y     &   Y      & RECOSIM &   Y             &   Y  &   \\
208 > \caption{\label{tab:victorybad}
209 > Test of the data driven method in Monte Carlo
210 > under different assumptions, evaluated using Spring10 MC.  See text for details.}
211 > \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
212 > \hline
213 > & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & Z veto & \met $>$ 50& obs/pred \\
214 > & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &       \\ \hline
215 > 1&Y                        &     N          &   N      &  GEN    &   N             &   N    & N          & 1.90  \\
216 > 2&Y                        &     N          &   N      &  GEN    &   Y             &   N    & N          & 1.64  \\
217 > 3&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & N          & 1.59  \\
218 > 4&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & Y          & 1.55  \\
219 > 5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
220 > 6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
221 > 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.38  \\
222   \hline
223   \end{tabular}
224   \end{center}
225   \end{table}
226  
227  
228 + \begin{table}[htb]
229 + \begin{center}
230 + \caption{\label{tab:victorysyst}
231 + Summary of variations in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton.
232 + In the first table, `up' and `down' refer to shifting the hadronic energy scale up and down by 5\%. In the second table, the quoted value
233 + refers to the amount of additional smearing of the MET, as discussed in the text. In the third table, the normalization of all backgrounds
234 + other than $t\bar{t} \to$~dilepton is varied. }
235 + \begin{tabular}{ lcccc }
236 + \hline
237 +       MET scale  &      Predicted       &       Observed       &       Obs/pred       \\
238 + \hline
239 +        nominal   &  0.92 $ \pm $ 0.09   &  1.27 $ \pm $ 0.10   &   1.39 $ \pm $ 0.18  \\
240 +            up    &  0.90 $ \pm $ 0.09   &  1.58 $ \pm $ 0.10   &   1.75 $ \pm $ 0.21  \\
241 +          down    &  0.70 $ \pm $ 0.06   &  0.96 $ \pm $ 0.09   &   1.37 $ \pm $ 0.18  \\
242 + \hline
243 +   MET smearing   &      Predicted       &       Observed       &       Obs/pred       \\
244 + \hline
245 +        nominal   &  0.92 $ \pm $ 0.09   &  1.27 $ \pm $ 0.10   &   1.39 $ \pm $ 0.18  \\
246 +           10\%   &  0.88 $ \pm $ 0.09   &  1.28 $ \pm $ 0.10   &   1.47 $ \pm $ 0.19  \\
247 +           20\%   &  0.87 $ \pm $ 0.09   &  1.26 $ \pm $ 0.10   &   1.44 $ \pm $ 0.19  \\
248 +           30\%   &  1.03 $ \pm $ 0.17   &  1.33 $ \pm $ 0.10   &   1.29 $ \pm $ 0.23  \\
249 +           40\%   &  0.88 $ \pm $ 0.09   &  1.36 $ \pm $ 0.10   &   1.55 $ \pm $ 0.20  \\
250 +           50\%   &  0.80 $ \pm $ 0.07   &  1.39 $ \pm $ 0.10   &   1.73 $ \pm $ 0.19  \\
251 + \hline
252 +  non-$t\bar{t} \to$~dilepton bkg   &       Predicted   &           Observed   &           Obs/pred   \\
253 + \hline
254 +   ttdil only                       &   0.79 $ \pm $ 0.07   &   1.07 $ \pm $ 0.06   &   1.36 $ \pm $ 0.14   \\
255 +   nominal                          &   0.92 $ \pm $ 0.09   &   1.27 $ \pm $ 0.10   &   1.39 $ \pm $ 0.18   \\
256 +   double non-ttdil yield           &   1.04 $ \pm $ 0.15   &   1.47 $ \pm $ 0.16   &   1.40 $ \pm $ 0.25   \\
257 + \hline
258 + \end{tabular}
259 + \end{center}
260 + \end{table}
261 +
262   The largest discrepancy between prediction and observation occurs on the first
263   line of Table~\ref{tab:victorybad}, {\em i.e.}, at the generator level with no
264   cuts.  We have verified that this effect is due to the polarization of
265   the $W$ (we remove the polarization by reweighting the events and we get
266   good agreement between prediction and observation).  The kinematical
267 < requirements (lines 2 and 3) do not have a significant additional effect.
268 < Going from GEN to RECOSIM there is a significant change in observed/predicted.  
269 < We have tracked this down to the fact that tcMET underestimates the true \met
270 < by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
271 < for each 1.5\% change in \met response.}.  Finally, contamination from non $t\bar{t}$
272 < events can have a significant impact on the BG prediction.  The changes between
273 < lines 5 and 6 of Table~\ref{tab:victorybad} is driven by only {\color{red} 3}
274 < Drell Yan events that pass the \met selection.
267 > requirements (lines 2,3,4) compensate somewhat for the effect of W polarization.
268 > Going from GEN to RECOSIM, the change in observed/predicted is small.  
269 > % We have tracked this down to the fact that tcMET underestimates the true \met
270 > % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
271 > %for each 1.5\% change in \met response.}.  
272 > Finally, contamination from non $t\bar{t}$
273 > events can have a significant impact on the BG prediction.  
274 > %The changes between
275 > %lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
276 > %Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
277 > %is statistically not well quantified).
278  
279   An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
280   not include effects of spin correlations between the two top quarks.  
281   We have studied this effect at the generator level using Alpgen.  We find
282 < that the bias is a the few percent level.
282 > that the bias is at the few percent level.
283  
284 < Based on the results of Table~\ref{tab:victorybad}, we conclude that the
285 < naive data driven background estimate based on $P_T{\ell\ell)}$ needs to
286 < be corrected by a factor of {\color{red} $1.4 \pm 0.3$  (We need to
287 < decide what this number should be)}.  The quoted
288 < uncertainty is based on the stability of the Monte Carlo tests under
289 < variations of event selections, choices of \met algorithm, etc.
284 > Based on the results of Table~\ref{tab:victorysyst}, we conclude that the
285 > naive data-driven background estimate based on $P_T{(\ell\ell)}$ needs to
286 > be corrected by a factor of $ K_C = 1.4 \pm 0.2({\rm stat})$.
287 >
288 > The dominant sources of systematic uncertainty in $K_C$ are due to non-$t\bar{t} \to$~dilepton backgrounds,
289 > and the MET scale and resolution uncertainties, as summarized in Table~\ref{tab:victorysyst}.
290 > The impact of non-$t\bar{t}$-dilepton background is assessed
291 > by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton.
292 > The uncertainty is assessed as the larger of the differences between the nominal $K_C$ value and the values
293 > obtained using only $t\bar{t} \to$~dilepton MC and obtained by doubling the non $t\bar{t} \to$~dilepton component,
294 > giving an uncertainty of $0.03$.
295 >
296 > The uncertainty in $K_C$ due to the MET scale uncertainty is assessed by varying the hadronic energy scale using
297 > the same method as in~\cite{ref:top}, giving an uncertainty of 0.36.
298 > We also assess the impact of the MET resolution
299 > uncertainty on $K_C$ by applying a random smearing to the MET. For each event, we determine the expected MET resolution
300 > based on the sumJetPt, and smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%.
301 > The results show that $K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty.
302  
303 + Incorporating all the statistical and systematic uncertainties we find $K_C = 1.4 \pm 0.4$.
304  
305   \subsection{Signal Contamination}
306   \label{sec:sigcont}
307  
308 < All data-driven methods are principle subject to signal contaminations
308 > All data-driven methods are in principle subject to signal contaminations
309   in the control regions, and the methods described in
310   Sections~\ref{sec:abcd} and~\ref{sec:victory} are not exceptions.
311   Signal contamination tends to dilute the significance of a signal
# Line 193 | Line 318 | adds redundancy because signal contamina
318   in the different control regions for the two methods.
319   For example, in the extreme case of a
320   new physics signal
321 < with $P_T(\ell \ell) = \met$, an excess of ev ents would be seen
321 > with $P_T(\ell \ell) = \met$, an excess of events would be seen
322   in the ABCD method but not in the $P_T(\ell \ell)$ method.
323  
324  
325   The LM points are benchmarks for SUSY analyses at CMS.  The effects
326   of signal contaminations for a couple such points are summarized
327 < in Table~\ref{tab:sigcontABCD} and~\ref{tab:sigcontPT}.
203 < Signal contamination is definitely an important
327 > in Table~\ref{tab:sigcont}. Signal contamination is definitely an important
328   effect for these two LM points, but it does not totally hide the
329   presence of the signal.
330  
331  
332   \begin{table}[htb]
333   \begin{center}
334 < \caption{\label{tab:sigcontABCD} Effects of signal contamination
335 < for the background predictions of the ABCD method including LM0 or
336 < LM1.  Results
337 < are normalized to 30 pb$^{-1}$.}
338 < \begin{tabular}{|c||c|c||c|c|}
215 < \hline
216 < SM         & LM0         & BG Prediction & LM1          & BG Prediction \\
217 < Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
218 < x          & x           & x             & x            & x \\
334 > \caption{\label{tab:sigcont} Effects of signal contamination
335 > for the two data-driven background estimates. The three columns give
336 > the expected yield in the signal region and the background estimates
337 > using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 34.0~pb$^{-1}$.}
338 > \begin{tabular}{lccc}
339   \hline
340 < \end{tabular}
341 < \end{center}
342 < \end{table}
343 <
344 < \begin{table}[htb]
345 < \begin{center}
346 < \caption{\label{tab:sigcontPT} Effects of signal contamination
347 < for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
228 < LM1.  Results
229 < are normalized to 30 pb$^{-1}$.}
230 < \begin{tabular}{|c||c|c||c|c|}
231 < \hline
232 < SM         & LM0         & BG Prediction & LM1          & BG Prediction \\
233 < Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
234 < x          & x           & x             & x            & x \\
340 >            &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
341 > \hline
342 > SM only     &       1.3      &      1.3    &       0.9        \\
343 > SM + LM0    &       7.4      &      4.4    &       1.9        \\
344 > SM + LM1    &       3.8      &      1.6    &       1.4        \\
345 > %SM only     &       1.27      &      1.27    &       0.92        \\
346 > %SM + LM0    &       7.39      &      4.38    &       1.93        \\
347 > %SM + LM1    &       3.77      &      1.62    &       1.41        \\
348   \hline
349   \end{tabular}
350   \end{center}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines