ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.8 by claudioc, Fri Nov 5 15:53:10 2010 UTC vs.
Revision 1.38 by benhoob, Wed Dec 8 12:18:30 2010 UTC

# Line 2 | Line 2
2   \label{sec:datadriven}
3   We have developed two data-driven methods to
4   estimate the background in the signal region.
5 < The first one explouts the fact that
6 < \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
5 > The first one exploits the fact that
6 > SumJetPt and \met$/\sqrt{\rm SumJetPt}$ are nearly
7   uncorrelated for the $t\bar{t}$ background
8   (Section~\ref{sec:abcd});  the second one
9   is based on the fact that in $t\bar{t}$ the
# Line 12 | Line 12 | nearly the same as the $P_T$ of the pair
12   from $W$-decays, which is reconstructed as \met in the
13   detector.
14  
15 < In 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
16 < the signal region.  The expectations from the LMO
17 < and LM1 SUSY benchmark points are 5.6 and
18 < 2.2 events respectively.
15 >
16   %{\color{red} I took these
17   %numbers from the twiki, rescaling from 11.06 to 30/pb.
18   %They seem too large...are they really right?}
# Line 24 | Line 21 | and LM1 SUSY benchmark points are 5.6 an
21   \subsection{ABCD method}
22   \label{sec:abcd}
23  
24 < We find that in $t\bar{t}$ events \met and
25 < \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated.
26 < This is demonstrated in Figure~\ref{fig:uncor}.
24 > We find that in $t\bar{t}$ events SumJetPt and
25 > \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 > as demonstrated in Fig.~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
30 < \begin{figure}[tb]
30 > %\begin{figure}[bht]
31 > %\begin{center}
32 > %\includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
33 > %\caption{\label{fig:uncor}\protect Distributions of SumJetPt
34 > %in MC $t\bar{t}$ events for different intervals of
35 > %MET$/\sqrt{\rm SumJetPt}$.}
36 > %\end{center}
37 > %\end{figure}
38 >
39 > \begin{figure}[bht]
40   \begin{center}
41 < \includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
41 > \includegraphics[width=0.75\linewidth]{uncor.png}
42   \caption{\label{fig:uncor}\protect Distributions of SumJetPt
43   in MC $t\bar{t}$ events for different intervals of
44 < MET$/\sqrt{\rm SumJetPt}$.}
44 > MET$/\sqrt{\rm SumJetPt}$. h1, h2, and h3 refer to the MET$/\sqrt{\rm SumJetPt}$
45 > intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively. }
46   \end{center}
47   \end{figure}
48  
49 < \begin{figure}[bt]
49 > \begin{figure}[tb]
50   \begin{center}
51 < \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
52 < \caption{\label{fig:abcdMC}\protect Distributions of SumJetPt
53 < vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo.  Here we also
54 < show our choice of ABCD regions.}
51 > \includegraphics[width=0.75\linewidth]{ttdil_uncor_38X.png}
52 > \caption{\label{fig:abcdMC}\protect Distributions of MET$/\sqrt{\rm SumJetPt}$ vs.
53 > SumJetPt for SM Monte Carlo.  Here we also show our choice of ABCD regions. The correlation coefficient
54 > ${\rm corr_{XY}}$ is computed for events falling in the ABCD regions.}
55   \end{center}
56   \end{figure}
57  
58  
59   Our choice of ABCD regions is shown in Figure~\ref{fig:abcdMC}.
60   The signal region is region D.  The expected number of events
61 < in the four regions for the SM Monte Carlo, as well as the BG
62 < prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
63 < luminosity of 30 pb$^{-1}$.  The ABCD method is accurate
64 < to about 10\%. {\color{red} Avi wants some statement about stability
65 < wrt changes in regions.  I am not sure that we have done it and
66 < I am not sure it is necessary (Claudio).}
61 > in the four regions for the SM Monte Carlo, as well as the background
62 > prediction A $\times$ C / B are given in Table~\ref{tab:abcdMC} for an integrated
63 > luminosity of 34.0 pb$^{-1}$. In Table~\ref{tab:abcdsyst}, we test the stability of
64 > observed/predicted with respect to variations in the ABCD boundaries.
65 > Based on the results in Tables~\ref{tab:abcdMC} and~\ref{tab:abcdsyst}, we assess
66 > a systematic uncertainty of 20\% on the prediction of the ABCD method.
67 >
68 > %As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties
69 > %by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty,
70 > %which we take as $\pm$5\% for SumJetPt and $\pm$2.5\% for MET/$\sqrt{\rm SumJetPt}$, since the
71 > %uncertainty on this quantity partially cancels due to the fact that it is a ratio of correlated
72 > %quantities. Based on these studies we assess a correction factor $k_{ABCD} = 1.2 \pm 0.2$ to the
73 > %predicted yield using the ABCD method.
74 >
75 >
76 > %{\color{red} Avi wants some statement about stability
77 > %wrt changes in regions.  I am not sure that we have done it and
78 > %I am not sure it is necessary (Claudio).}
79  
80 < \begin{table}[htb]
80 > \begin{table}[ht]
81   \begin{center}
82   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
83 < 30 pb$^{-1}$ in the ABCD regions.}
84 < \begin{tabular}{|l|c|c|c|c||c|}
83 > 34.0~pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
84 > the signal region given by A $\times$ C / B. Here `SM other' is the sum
85 > of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
86 > $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
87 > \begin{tabular}{lccccc}
88 > %%%official json v3, 38X MC (D6T ttbar and DY)
89 > \hline
90 >              sample                     &                   A   &                   B   &                   C   &                   D   &                PRED  \\
91 > \hline
92 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &   8.44  $\pm$  0.18   &  32.83  $\pm$  0.35   &   4.78  $\pm$  0.14   &   1.07  $\pm$  0.06   &   1.23  $\pm$  0.05  \\
93 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &   0.17  $\pm$  0.08   &   1.18  $\pm$  0.22   &   0.04  $\pm$  0.04   &   0.12  $\pm$  0.07   &   0.01  $\pm$  0.01  \\
94 >            SM other                     &   0.53  $\pm$  0.03   &   2.26  $\pm$  0.11   &   0.23  $\pm$  0.03   &   0.07  $\pm$  0.01   &   0.05  $\pm$  0.01  \\
95 > \hline
96 >         total SM MC                     &   9.14  $\pm$  0.20   &  36.26  $\pm$  0.43   &   5.05  $\pm$  0.14   &   1.27  $\pm$  0.10   &   1.27  $\pm$  0.05  \\
97 > \hline
98 > \end{tabular}
99 > \end{center}
100 > \end{table}
101 >
102 >
103 >
104 > \begin{table}[ht]
105 > \begin{center}
106 > \caption{\label{tab:abcdsyst}
107 > Results of the systematic study of the ABCD method by varying the boundaries
108 > between the ABCD regions shown in Fig.~\ref{fig:abcdMC}. Here $x_1$ is the lower SumJetPt boundary and
109 > $x_2$ is the boundary separating regions A and B from C and D, their nominal values are 125 and 300~GeV,
110 > respectively. $y_1$ is the lower MET/$\sqrt{\rm SumJetPt}$ boundary and
111 > $y_2$ is the boundary separating regions B and C from A and D, their nominal values are 4.5 and 8.5~GeV$^{1/2}$,
112 > respectively.}
113 > \begin{tabular}{cccc|c}
114 > \hline
115 > $x_1$   &   $x_2$ & $y_1$   &   $y_2$ & Observed/Predicted \\
116 > \hline
117 >
118 > nominal & nominal & nominal & nominal & $1.00 \pm 0.08$    \\
119 >
120 > +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.08 \pm 0.11$    \\
121 >
122 > +5\%    & +5\%    & nominal & nominal & $1.04 \pm 0.10$    \\
123 >
124 > nominal & nominal & +2.5\%  & +2.5\%  & $1.03 \pm 0.09$    \\
125 >
126 > nominal & +5\%    & nominal & +2.5\%  & $1.05 \pm 0.10$    \\
127 >
128 > nominal & -5\%    & nominal & -2.5\%  & $0.95 \pm 0.07$    \\
129 >
130 > -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.00 \pm 0.08$    \\
131 >
132 > +5\%    & +5\%    & -2.5\%  & -2.5\%  & $0.98 \pm 0.09$    \\
133   \hline
67 Sample   & A   & B    & C   & D   & AC/D \\ \hline
68 ttdil    & 6.9 & 28.6 & 4.2 & 1.0 & 1.0  \\
69 Zjets    & 0.0 & 1.3  & 0.1 & 0.1 & 0.0  \\
70 Other SM & 0.5 & 2.0  & 0.1 & 0.1 & 0.0  \\ \hline
71 total MC & 7.4 & 31.9 & 4.4 & 1.2 & 1.0 \\ \hline
134   \end{tabular}
135   \end{center}
136   \end{table}
# Line 89 | Line 151 | In practice one has to rescale the resul
151   to account for the fact that any dilepton selection must include a
152   moderate \met cut in order to reduce Drell Yan backgrounds.  This
153   is discussed in Section 5.3 of Reference~\cite{ref:ourvictory}; for a \met
154 < cut of 50 GeV, the rescaling factor is obtained from the data as
154 > cut of 50 GeV, the rescaling factor is obtained from the MC as
155  
156   \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
157   \begin{center}
158 < $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~}$
158 > $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~} = 1.5$
159   \end{center}
160  
161  
162 < Monte Carlo studies give values of $K$ that are typically between 1.5 and 1.6,
163 < depending on selection details.
162 > %%%TO BE REPLACED
163 > %Given the integrated luminosity of the
164 > %present dataset, the determination of $K$ in data is severely statistics
165 > %limited.  Thus, we take $K$ from $t\bar{t}$ Monte Carlo as
166 >
167 > %\begin{center}
168 > %$ K_{MC} = \frac{\int_0^{\infty} {\cal N}(\met)~~d\met~}{\int_{50}^{\infty} {\cal N}(\met)~~d\met~}$
169 > %\end{center}
170 >
171 > %\noindent {\color{red} For the 11 pb result we have used $K$ from data.}
172  
173   There are several effects that spoil the correspondance between \met and
174   $P_T(\ell\ell)$:
175   \begin{itemize}
176   \item $Ws$ in top events are polarized.  Neutrinos are emitted preferentially
177 < forward in the $W$ rest frame, thus the $P_T(\nu\nu)$ distribution is harder
177 > parallel to the $W$ velocity while charged leptons are emitted prefertially
178 > anti-parallel. Thus the $P_T(\nu\nu)$ distribution is harder
179   than the $P_T(\ell\ell)$ distribution for top dilepton events.
180   \item The lepton selections results in $P_T$ and $\eta$ cuts on the individual
181   leptons that have no simple correspondance to the neutrino requirements.
182   \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
183   neutrinos which is only partially compensated by the $K$ factor above.
184   \item The \met resolution is much worse than the dilepton $P_T$ resolution.
185 < When convoluted with a falling spectrum in the tails of \met, this result
185 > When convoluted with a falling spectrum in the tails of \met, this results
186   in a harder spectrum for \met than the original $P_T(\nu\nu)$.
187   \item The \met response in CMS is not exactly 1.  This causes a distortion
188   in the \met distribution that is not present in the $P_T(\ell\ell)$ distribution.
# Line 122 | Line 193 | of $P_T(\ell\ell)$ and $P_T(\nu\nu)$ do
193   sources.  These events can affect the background prediction.  Particularly
194   dangerous are high $P_T$ Drell Yan events that barely pass the \met$>$ 50
195   GeV selection.  They will tend to push the data-driven background prediction up.
196 + Therefore we estimate the number of DY events entering the background prediction
197 + using the $R_{out/in}$ method as described in Sec.~\ref{sec:othBG}.
198   \end{itemize}
199  
200   We have studied these effects in SM Monte Carlo, using a mixture of generator and
# Line 132 | Line 205 | The results are summarized in Table~\ref
205  
206   \begin{table}[htb]
207   \begin{center}
208 < \caption{\label{tab:victorybad} Test of the data driven method in Monte Carlo
209 < under different assumptions.  See text for details.}
208 > \caption{\label{tab:victorybad}
209 > Test of the data driven method in Monte Carlo
210 > under different assumptions, evaluated using Spring10 MC.  See text for details.}
211   \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
212   \hline
213   & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & Z veto & \met $>$ 50& obs/pred \\
214 < & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &  \\ \hline
214 > & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &       \\ \hline
215   1&Y                        &     N          &   N      &  GEN    &   N             &   N    & N          & 1.90  \\
216   2&Y                        &     N          &   N      &  GEN    &   Y             &   N    & N          & 1.64  \\
217   3&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & N          & 1.59  \\
218   4&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & Y          & 1.55  \\
219   5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
220   6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
221 < 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.18  \\
221 > 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.38  \\
222   \hline
223   \end{tabular}
224   \end{center}
225   \end{table}
226  
227  
228 + \begin{table}[htb]
229 + \begin{center}
230 + \caption{\label{tab:victorysyst}
231 + Summary of variations in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton.
232 + In the first table, `up' and `down' refer to shifting the hadronic energy scale up and down by 5\%. In the second table, the quoted value
233 + refers to the amount of additional smearing of the MET, as discussed in the text. In the third table, the normalization of all backgrounds
234 + other than $t\bar{t} \to$~dilepton is varied. }
235 + \begin{tabular}{ lcccc }
236 + \hline
237 +       MET scale  &      Predicted       &       Observed       &       Obs/pred       \\
238 + \hline
239 +        nominal   &  0.92 $ \pm $ 0.09   &  1.27 $ \pm $ 0.10   &   1.39 $ \pm $ 0.18  \\
240 +            up    &  0.90 $ \pm $ 0.09   &  1.58 $ \pm $ 0.10   &   1.75 $ \pm $ 0.21  \\
241 +          down    &  0.70 $ \pm $ 0.06   &  0.96 $ \pm $ 0.09   &   1.37 $ \pm $ 0.18  \\
242 + \hline
243 +   MET smearing   &      Predicted       &       Observed       &       Obs/pred       \\
244 + \hline
245 +        nominal   &  0.92 $ \pm $ 0.09   &  1.27 $ \pm $ 0.10   &   1.39 $ \pm $ 0.18  \\
246 +           10\%   &  0.88 $ \pm $ 0.09   &  1.28 $ \pm $ 0.10   &   1.47 $ \pm $ 0.19  \\
247 +           20\%   &  0.87 $ \pm $ 0.09   &  1.26 $ \pm $ 0.10   &   1.44 $ \pm $ 0.19  \\
248 +           30\%   &  1.03 $ \pm $ 0.17   &  1.33 $ \pm $ 0.10   &   1.29 $ \pm $ 0.23  \\
249 +           40\%   &  0.88 $ \pm $ 0.09   &  1.36 $ \pm $ 0.10   &   1.55 $ \pm $ 0.20  \\
250 +           50\%   &  0.80 $ \pm $ 0.07   &  1.39 $ \pm $ 0.10   &   1.73 $ \pm $ 0.19  \\
251 + \hline
252 +  non-$t\bar{t} \to$~dilepton bkg   &       Predicted   &           Observed   &           Obs/pred   \\
253 + \hline
254 +   ttdil only                       &   0.79 $ \pm $ 0.07   &   1.07 $ \pm $ 0.06   &   1.36 $ \pm $ 0.14   \\
255 +   nominal                          &   0.92 $ \pm $ 0.09   &   1.27 $ \pm $ 0.10   &   1.39 $ \pm $ 0.18   \\
256 +   double non-ttdil yield           &   1.04 $ \pm $ 0.15   &   1.47 $ \pm $ 0.16   &   1.40 $ \pm $ 0.25   \\
257 + \hline
258 + \end{tabular}
259 + \end{center}
260 + \end{table}
261 +
262   The largest discrepancy between prediction and observation occurs on the first
263   line of Table~\ref{tab:victorybad}, {\em i.e.}, at the generator level with no
264   cuts.  We have verified that this effect is due to the polarization of
# Line 162 | Line 270 | Going from GEN to RECOSIM, the change in
270   % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
271   %for each 1.5\% change in \met response.}.  
272   Finally, contamination from non $t\bar{t}$
273 < events can have a significant impact on the BG prediction.  The changes between
274 < lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
275 < Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
276 < is statistically not well quantified).
273 > events can have a significant impact on the BG prediction.  
274 > %The changes between
275 > %lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
276 > %Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
277 > %is statistically not well quantified).
278  
279   An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
280   not include effects of spin correlations between the two top quarks.  
281   We have studied this effect at the generator level using Alpgen.  We find
282   that the bias is at the few percent level.
283  
284 < Based on the results of Table~\ref{tab:victorybad}, we conclude that the
285 < naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
286 < be corrected by a factor of {\color{red} $1.2 \pm 0.3$ (We need to talk
287 < about this)} . The quoted
288 < uncertainty is based on the stability of the Monte Carlo tests under
289 < variations of event selections, choices of \met algorithm, etc.
290 < For example, we find that observed/predicted changes by roughly 0.1
291 < for each 1.5\% change in the average \met response.  
292 <
284 > Based on the results of Table~\ref{tab:victorysyst}, we conclude that the
285 > naive data-driven background estimate based on $P_T{(\ell\ell)}$ needs to
286 > be corrected by a factor of $ K_C = 1.4 \pm 0.2({\rm stat})$.
287 >
288 > The dominant sources of systematic uncertainty in $K_C$ are due to non-$t\bar{t} \to$~dilepton backgrounds,
289 > and the MET scale and resolution uncertainties, as summarized in Table~\ref{tab:victorysyst}.
290 > The impact of non-$t\bar{t}$-dilepton background is assessed
291 > by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton.
292 > The uncertainty is assessed as the larger of the differences between the nominal $K_C$ value and the values
293 > obtained using only $t\bar{t} \to$~dilepton MC and obtained by doubling the non $t\bar{t} \to$~dilepton component,
294 > giving an uncertainty of $0.03$.
295 >
296 > The uncertainty in $K_C$ due to the MET scale uncertainty is assessed by varying the hadronic energy scale using
297 > the same method as in~\cite{ref:top}, giving an uncertainty of 0.36.
298 > We also assess the impact of the MET resolution
299 > uncertainty on $K_C$ by applying a random smearing to the MET. For each event, we determine the expected MET resolution
300 > based on the sumJetPt, and smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%.
301 > The results show that $K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty.
302  
303 + Incorporating all the statistical and systematic uncertainties we find $K_C = 1.4 \pm 0.4$.
304  
305   \subsection{Signal Contamination}
306   \label{sec:sigcont}
# Line 205 | Line 324 | in the ABCD method but not in the $P_T(\
324  
325   The LM points are benchmarks for SUSY analyses at CMS.  The effects
326   of signal contaminations for a couple such points are summarized
327 < in Table~\ref{tab:sigcontABCD} and~\ref{tab:sigcontPT}.
209 < Signal contamination is definitely an important
327 > in Table~\ref{tab:sigcont}. Signal contamination is definitely an important
328   effect for these two LM points, but it does not totally hide the
329   presence of the signal.
330  
331  
332   \begin{table}[htb]
333   \begin{center}
334 < \caption{\label{tab:sigcontABCD} Effects of signal contamination
335 < for the background predictions of the ABCD method including LM0 or
336 < LM1.  Results
337 < are normalized to 30 pb$^{-1}$.}
338 < \begin{tabular}{|c||c|c||c|c|}
221 < \hline
222 < SM         & SM$+$LM0    & BG Prediction & Sm$+$LM1     & BG Prediction \\
223 < Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
224 < 1.2        & 6.8         & 3.7           & 3.4          & 1.3 \\
334 > \caption{\label{tab:sigcont} Effects of signal contamination
335 > for the two data-driven background estimates. The three columns give
336 > the expected yield in the signal region and the background estimates
337 > using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 34.0~pb$^{-1}$.}
338 > \begin{tabular}{lccc}
339   \hline
340 < \end{tabular}
341 < \end{center}
342 < \end{table}
343 <
344 < \begin{table}[htb]
345 < \begin{center}
346 < \caption{\label{tab:sigcontPT} Effects of signal contamination
347 < for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
234 < LM1.  Results
235 < are normalized to 30 pb$^{-1}$. {\color{red} Does this BG prediction include
236 < the fudge factor of 1.4 or watever because the method is not perfect.}}
237 < \begin{tabular}{|c||c|c||c|c|}
238 < \hline
239 < SM         & SM$+$LM0    & BG Prediction & Sm$+$LM1     & BG Prediction \\
240 < Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
241 < 1.2        & 6.8         & 2.2           & 3.4          & 1.5 \\
340 >            &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
341 > \hline
342 > SM only     &       1.3      &      1.3    &       0.9        \\
343 > SM + LM0    &       7.4      &      4.4    &       1.9        \\
344 > SM + LM1    &       3.8      &      1.6    &       1.4        \\
345 > %SM only     &       1.27      &      1.27    &       0.92        \\
346 > %SM + LM0    &       7.39      &      4.38    &       1.93        \\
347 > %SM + LM1    &       3.77      &      1.62    &       1.41        \\
348   \hline
349   \end{tabular}
350   \end{center}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines