ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.15 by benhoob, Thu Nov 11 16:36:56 2010 UTC vs.
Revision 1.40 by benhoob, Wed Jan 12 00:24:58 2011 UTC

# Line 3 | Line 3
3   We have developed two data-driven methods to
4   estimate the background in the signal region.
5   The first one exploits the fact that
6 < \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
6 > SumJetPt and \met$/\sqrt{\rm SumJetPt}$ are nearly
7   uncorrelated for the $t\bar{t}$ background
8   (Section~\ref{sec:abcd});  the second one
9   is based on the fact that in $t\bar{t}$ the
# Line 21 | Line 21 | detector.
21   \subsection{ABCD method}
22   \label{sec:abcd}
23  
24 < We find that in $t\bar{t}$ events \met and
25 < \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated.
26 < This is demonstrated in Figure~\ref{fig:uncor}.
24 > We find that in $t\bar{t}$ events SumJetPt and
25 > \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 > as demonstrated in Fig.~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
30 < \begin{figure}[tb]
30 > %\begin{figure}[bht]
31 > %\begin{center}
32 > %\includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
33 > %\caption{\label{fig:uncor}\protect Distributions of SumJetPt
34 > %in MC $t\bar{t}$ events for different intervals of
35 > %MET$/\sqrt{\rm SumJetPt}$.}
36 > %\end{center}
37 > %\end{figure}
38 >
39 > \begin{figure}[bht]
40   \begin{center}
41 < \includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
41 > \includegraphics[width=0.75\linewidth]{uncor.png}
42   \caption{\label{fig:uncor}\protect Distributions of SumJetPt
43   in MC $t\bar{t}$ events for different intervals of
44 < MET$/\sqrt{\rm SumJetPt}$.}
44 > MET$/\sqrt{\rm SumJetPt}$. h1, h2, and h3 refer to the MET$/\sqrt{\rm SumJetPt}$
45 > intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively. }
46   \end{center}
47   \end{figure}
48  
49 < \begin{figure}[bt]
49 > \begin{figure}[tb]
50   \begin{center}
51 < \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
52 < \caption{\label{fig:abcdMC}\protect Distributions of SumJetPt
53 < vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo.  Here we also
54 < show our choice of ABCD regions.}
51 > \includegraphics[width=0.75\linewidth]{ttdil_uncor_38X.png}
52 > \caption{\label{fig:abcdMC}\protect Distributions of MET$/\sqrt{\rm SumJetPt}$ vs.
53 > SumJetPt for SM Monte Carlo.  Here we also show our choice of ABCD regions. The correlation coefficient
54 > ${\rm corr_{XY}}$ is computed for events falling in the ABCD regions.}
55   \end{center}
56   \end{figure}
57  
58  
59   Our choice of ABCD regions is shown in Figure~\ref{fig:abcdMC}.
60   The signal region is region D.  The expected number of events
61 < in the four regions for the SM Monte Carlo, as well as the BG
62 < prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
63 < luminosity of 35 pb$^{-1}$.  The ABCD method is accurate
64 < to about 20\%.
61 > in the four regions for the SM Monte Carlo, as well as the background
62 > prediction A $\times$ C / B are given in Table~\ref{tab:abcdMC} for an integrated
63 > luminosity of 34.0 pb$^{-1}$. In Table~\ref{tab:abcdsyst}, we test the stability of
64 > observed/predicted with respect to variations in the ABCD boundaries.
65 > Based on the results in Tables~\ref{tab:abcdMC} and~\ref{tab:abcdsyst}, we assess
66 > a systematic uncertainty of 20\% on the prediction of the ABCD method.
67 >
68 > %As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties
69 > %by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty,
70 > %which we take as $\pm$5\% for SumJetPt and $\pm$2.5\% for MET/$\sqrt{\rm SumJetPt}$, since the
71 > %uncertainty on this quantity partially cancels due to the fact that it is a ratio of correlated
72 > %quantities. Based on these studies we assess a correction factor $k_{ABCD} = 1.2 \pm 0.2$ to the
73 > %predicted yield using the ABCD method.
74 >
75 >
76   %{\color{red} Avi wants some statement about stability
77   %wrt changes in regions.  I am not sure that we have done it and
78   %I am not sure it is necessary (Claudio).}
79  
80 < \begin{table}[htb]
80 > \begin{table}[ht]
81   \begin{center}
82   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
83 < 35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
84 < the signal region given by A$\times$C/B. Here 'SM other' is the sum
83 > 34.0~pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
84 > the signal region given by A $\times$ C / B. Here `SM other' is the sum
85   of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
86   $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
87 < \begin{tabular}{l||c|c|c|c||c}
87 > \begin{tabular}{lccccc}
88 > %%%official json v3, 38X MC (D6T ttbar and DY)
89   \hline
90 <         sample                          &              A   &              B   &              C   &              D   &    A$\times$C/B \\
90 >              sample                     &                   A   &                   B   &                   C   &                   D   &                PRED  \\
91   \hline
92 < $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
93 <   $Z^0$ + jets                          &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
94 <       SM other                          &           0.65   &           2.31   &           0.17   &           0.14   &           0.05  \\
92 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &   8.44  $\pm$  0.18   &  32.83  $\pm$  0.35   &   4.78  $\pm$  0.14   &   1.07  $\pm$  0.06   &   1.23  $\pm$  0.05  \\
93 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &   0.17  $\pm$  0.08   &   1.18  $\pm$  0.22   &   0.04  $\pm$  0.04   &   0.12  $\pm$  0.07   &   0.01  $\pm$  0.01  \\
94 >            SM other                     &   0.53  $\pm$  0.03   &   2.26  $\pm$  0.11   &   0.23  $\pm$  0.03   &   0.07  $\pm$  0.01   &   0.05  $\pm$  0.01  \\
95   \hline
96 <    total SM MC                          &           8.61   &          36.54   &           5.05   &           1.41   &           1.19  \\
96 >         total SM MC                     &   9.14  $\pm$  0.20   &  36.26  $\pm$  0.43   &   5.05  $\pm$  0.14   &   1.27  $\pm$  0.10   &   1.27  $\pm$  0.05  \\
97   \hline
98   \end{tabular}
99   \end{center}
100   \end{table}
101  
102 +
103 +
104 + \begin{table}[ht]
105 + \begin{center}
106 + \caption{\label{tab:abcdsyst}
107 + Results of the systematic study of the ABCD method by varying the boundaries
108 + between the ABCD regions shown in Fig.~\ref{fig:abcdMC}. Here $x_1$ is the lower SumJetPt boundary and
109 + $x_2$ is the boundary separating regions A and B from C and D, their nominal values are 125 and 300~GeV,
110 + respectively. $y_1$ is the lower MET/$\sqrt{\rm SumJetPt}$ boundary and
111 + $y_2$ is the boundary separating regions B and C from A and D, their nominal values are 4.5 and 8.5~GeV$^{1/2}$,
112 + respectively.}
113 + \begin{tabular}{cccc|c}
114 + \hline
115 + $x_1$   &   $x_2$ & $y_1$   &   $y_2$ & Observed/Predicted \\
116 + \hline
117 +
118 + nominal & nominal & nominal & nominal & $1.00 \pm 0.08$    \\
119 +
120 + +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.08 \pm 0.11$    \\
121 +
122 + +5\%    & +5\%    & nominal & nominal & $1.04 \pm 0.10$    \\
123 +
124 + nominal & nominal & +2.5\%  & +2.5\%  & $1.03 \pm 0.09$    \\
125 +
126 + nominal & +5\%    & nominal & +2.5\%  & $1.05 \pm 0.10$    \\
127 +
128 + nominal & -5\%    & nominal & -2.5\%  & $0.95 \pm 0.07$    \\
129 +
130 + -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.00 \pm 0.08$    \\
131 +
132 + +5\%    & +5\%    & -2.5\%  & -2.5\%  & $0.98 \pm 0.09$    \\
133 + \hline
134 + \end{tabular}
135 + \end{center}
136 + \end{table}
137 +
138 +
139 + \clearpage
140 +
141   \subsection{Dilepton $P_T$ method}
142   \label{sec:victory}
143   This method is based on a suggestion by V. Pavlunin\cite{ref:victory},
# Line 93 | Line 154 | In practice one has to rescale the resul
154   to account for the fact that any dilepton selection must include a
155   moderate \met cut in order to reduce Drell Yan backgrounds.  This
156   is discussed in Section 5.3 of Reference~\cite{ref:ourvictory}; for a \met
157 < cut of 50 GeV, the rescaling factor is obtained from the data as
157 > cut of 50 GeV, the rescaling factor is obtained from the MC as
158  
159   \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
160   \begin{center}
161 < $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~}$
161 > $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~} = 1.5$
162   \end{center}
163  
164  
104 Monte Carlo studies give values of $K$ that are typically between 1.5 and 1.6,
105 depending on selection details.  
165   %%%TO BE REPLACED
166   %Given the integrated luminosity of the
167   %present dataset, the determination of $K$ in data is severely statistics
# Line 114 | Line 173 | depending on selection details.
173  
174   %\noindent {\color{red} For the 11 pb result we have used $K$ from data.}
175  
176 +
177 + \begin{figure}[bht]
178 + \begin{center}
179 + \includegraphics[width=0.75\linewidth]{genvictory_Dec13.png}
180 + \caption{\label{fig:genvictory}\protect Distributions $P_T(\ell \ell)$
181 + and $P_T(\nu \nu)$ (aka {\it genmet})
182 + in $t\bar{t} \to$ dilepton Monte Carlo at the
183 + generator level.  Events with $W \to \tau \to \ell$ are not included.
184 + No kinematical requirements have been made.}
185 + \end{center}
186 + \end{figure}
187 +
188 +
189   There are several effects that spoil the correspondance between \met and
190   $P_T(\ell\ell)$:
191   \begin{itemize}
192   \item $Ws$ in top events are polarized.  Neutrinos are emitted preferentially
193 < forward in the $W$ rest frame, thus the $P_T(\nu\nu)$ distribution is harder
193 > parallel to the $W$ velocity while charged leptons are emitted prefertially
194 > anti-parallel. Thus the $P_T(\nu\nu)$ distribution is harder
195   than the $P_T(\ell\ell)$ distribution for top dilepton events.
196 + This turns out to be the dominant effect and it is illustrated in
197 + Figure~\ref{fig:genvictory}.
198   \item The lepton selections results in $P_T$ and $\eta$ cuts on the individual
199   leptons that have no simple correspondance to the neutrino requirements.
200   \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
201   neutrinos which is only partially compensated by the $K$ factor above.
202   \item The \met resolution is much worse than the dilepton $P_T$ resolution.
203 < When convoluted with a falling spectrum in the tails of \met, this result
203 > When convoluted with a falling spectrum in the tails of \met, this results
204   in a harder spectrum for \met than the original $P_T(\nu\nu)$.
205   \item The \met response in CMS is not exactly 1.  This causes a distortion
206   in the \met distribution that is not present in the $P_T(\ell\ell)$ distribution.
# Line 136 | Line 211 | of $P_T(\ell\ell)$ and $P_T(\nu\nu)$ do
211   sources.  These events can affect the background prediction.  Particularly
212   dangerous are high $P_T$ Drell Yan events that barely pass the \met$>$ 50
213   GeV selection.  They will tend to push the data-driven background prediction up.
214 + Therefore we estimate the number of DY events entering the background prediction
215 + using the $R_{out/in}$ method as described in Sec.~\ref{sec:othBG}.
216   \end{itemize}
217  
218   We have studied these effects in SM Monte Carlo, using a mixture of generator and
219   reconstruction level studies, putting the various effects in one at a time.
220   For each configuration, we apply the data-driven method and report as figure
221   of merit the ratio of observed and predicted events in the signal region.
222 < The results are summarized in Table~\ref{tab:victorybad}.
222 > The figure of merit is calculated as follows
223 > \begin{itemize}
224 > \item We construct \met/$\sqrt{{\rm sumJetPt}}$
225 > and $P_T(\ell \ell)/\sqrt{{\rm sumJetPt}}$ (rescaled by the factor $K$ defined
226 > above) distributions.  
227 > \item The distributions are constructed using either
228 > GEN or RECO, and including or excluding various effects ({\em e.g.:}
229 > $t \to W \to \tau \to \ell$).  
230 > \item In all cases the $N_{jets} \ge 2$ and
231 > sumJetPt $>$ 300 GeV requirements are applied.
232 > \item ``observed events'' is the integral of the \met/$\sqrt{{\rm sumJetPt}}$ distribution
233 > above 8.5.
234 > \item ``predicted events'' is the integral of the $P_T(\ell \ell)/\sqrt{{\rm sumJetPt}}$ distribution
235 > above 8.5.
236 > \end{itemize}
237 > The results are summarized in Table~\ref{tab:victorybad}.  Distributions corresponding to
238 > lines 4 and 5 of Table~\ref{tab:victorybad} are shown in Figure~\ref{fig:victorybad}.
239  
240   \begin{table}[htb]
241   \begin{center}
242 < \caption{\label{tab:victorybad} Test of the data driven method in Monte Carlo
243 < under different assumptions.  See text for details.}
242 > \caption{\label{tab:victorybad}
243 > Test of the data driven method in Monte Carlo
244 > under different assumptions, evaluated using Spring10 MC.  See text for details.}
245   \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
246   \hline
247   & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & Z veto & \met $>$ 50& obs/pred \\
248 < & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &  \\ \hline
248 > & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &       \\ \hline
249   1&Y                        &     N          &   N      &  GEN    &   N             &   N    & N          & 1.90  \\
250   2&Y                        &     N          &   N      &  GEN    &   Y             &   N    & N          & 1.64  \\
251   3&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & N          & 1.59  \\
252   4&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & Y          & 1.55  \\
253   5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
254   6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
255 < 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.18  \\
255 > 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.38  \\
256   \hline
257   \end{tabular}
258   \end{center}
259   \end{table}
260  
261  
262 + \begin{figure}[bht]
263 + \begin{center}
264 + \includegraphics[width=0.48\linewidth]{genvictory_sqrtHt_Dec13.png}
265 + \includegraphics[width=0.48\linewidth]{victory_Dec13.png}
266 + \caption{\label{fig:victorybad}\protect Distributions
267 + of MET/$\sqrt{{\rm sumJetPt}}$ (black) and $P_T(\ell \ell)/\sqrt{{\rm sumJetPt}}$
268 + (red) in $t\bar{t} \to$ dilepton Monte Carlo
269 + after lepton kinematical cuts, $N_{jets} \ge 2$, and
270 + sumJetPt $>$ 300 GeV.  The left (right) plot is at the GEN (RECO) level
271 + and corresponds to line 4 (5) of Table~\ref{tab:victorybad}.}
272 + \end{center}
273 + \end{figure}
274 +
275 +
276 +
277 + \begin{table}[htb]
278 + \begin{center}
279 + \caption{\label{tab:victorysyst}
280 + Summary of variations in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton.
281 + In the first table, `up' and `down' refer to shifting the hadronic energy scale up and down by 5\%. In the second table, the quoted value
282 + refers to the amount of additional smearing of the MET, as discussed in the text. In the third table, the normalization of all backgrounds
283 + other than $t\bar{t} \to$~dilepton is varied. }
284 + \begin{tabular}{ lcccc }
285 + \hline
286 +       MET scale  &      Predicted       &       Observed       &       Obs/pred       \\
287 + \hline
288 +        nominal   &  0.92 $ \pm $ 0.09   &  1.27 $ \pm $ 0.10   &   1.39 $ \pm $ 0.18  \\
289 +            up    &  0.90 $ \pm $ 0.09   &  1.58 $ \pm $ 0.10   &   1.75 $ \pm $ 0.21  \\
290 +          down    &  0.70 $ \pm $ 0.06   &  0.96 $ \pm $ 0.09   &   1.37 $ \pm $ 0.18  \\
291 + \hline
292 +   MET smearing   &      Predicted       &       Observed       &       Obs/pred       \\
293 + \hline
294 +        nominal   &  0.92 $ \pm $ 0.09   &  1.27 $ \pm $ 0.10   &   1.39 $ \pm $ 0.18  \\
295 +           10\%   &  0.88 $ \pm $ 0.09   &  1.28 $ \pm $ 0.10   &   1.47 $ \pm $ 0.19  \\
296 +           20\%   &  0.87 $ \pm $ 0.09   &  1.26 $ \pm $ 0.10   &   1.44 $ \pm $ 0.19  \\
297 +           30\%   &  1.03 $ \pm $ 0.17   &  1.33 $ \pm $ 0.10   &   1.29 $ \pm $ 0.23  \\
298 +           40\%   &  0.88 $ \pm $ 0.09   &  1.36 $ \pm $ 0.10   &   1.55 $ \pm $ 0.20  \\
299 +           50\%   &  0.80 $ \pm $ 0.07   &  1.39 $ \pm $ 0.10   &   1.73 $ \pm $ 0.19  \\
300 + \hline
301 +  non-$t\bar{t} \to$~dilepton bkg   &       Predicted   &           Observed   &           Obs/pred   \\
302 + \hline
303 +   ttdil only                       &   0.79 $ \pm $ 0.07   &   1.07 $ \pm $ 0.06   &   1.36 $ \pm $ 0.14   \\
304 +   nominal                          &   0.92 $ \pm $ 0.09   &   1.27 $ \pm $ 0.10   &   1.39 $ \pm $ 0.18   \\
305 +   double non-ttdil yield           &   1.04 $ \pm $ 0.15   &   1.47 $ \pm $ 0.16   &   1.40 $ \pm $ 0.25   \\
306 + \hline
307 + \end{tabular}
308 + \end{center}
309 + \end{table}
310 +
311   The largest discrepancy between prediction and observation occurs on the first
312   line of Table~\ref{tab:victorybad}, {\em i.e.}, at the generator level with no
313   cuts.  We have verified that this effect is due to the polarization of
# Line 176 | Line 319 | Going from GEN to RECOSIM, the change in
319   % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
320   %for each 1.5\% change in \met response.}.  
321   Finally, contamination from non $t\bar{t}$
322 < events can have a significant impact on the BG prediction.  The changes between
323 < lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
324 < Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
325 < is statistically not well quantified).
322 > events can have a significant impact on the BG prediction.  
323 > %The changes between
324 > %lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
325 > %Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
326 > %is statistically not well quantified).
327  
328   An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
329   not include effects of spin correlations between the two top quarks.  
330   We have studied this effect at the generator level using Alpgen.  We find
331 < that the bias is at the few percent level.
188 <
189 < %%%TO BE REPLACED
190 < %Based on the results of Table~\ref{tab:victorybad}, we conclude that the
191 < %naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
192 < %be corrected by a factor of {\color{red} $ K_{\rm{fudge}} =1.2 \pm 0.3$
193 < %(We still need to settle on thie exact value of this.
194 < %For the 11 pb analysis it is taken as =1.)} . The quoted
195 < %uncertainty is based on the stability of the Monte Carlo tests under
196 < %variations of event selections, choices of \met algorithm, etc.
197 < %For example, we find that observed/predicted changes by roughly 0.1
198 < %for each 1.5\% change in the average \met response.  
199 <
200 < Based on the results of Table~\ref{tab:victorybad}, we conclude that the
201 < naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
202 < be corrected by a factor of $ K_C = X \pm Y$.
203 < The value of this correction factor as well as the systematic uncertainty
204 < will be assessed using 38X ttbar madgraph MC. In the following we use
205 < $K_C = 1$ for simplicity. Based on previous MC studies we foresee a correction
206 < factor of $K_C \approx 1.2 - 1.5$, and we will assess an uncertainty
207 < based on the stability of the Monte Carlo tests under
208 < variations of event selections, choices of \met algorithm, etc.
209 < For example, we find that observed/predicted changes by roughly 0.1
210 < for each 1.5\% change in the average \met response.
331 > that the bias is (at most) at the few percent level.
332  
333 + Based on the results of Table~\ref{tab:victorysyst}, we conclude that the
334 + naive data-driven background estimate based on $P_T{(\ell\ell)}$ needs to
335 + be corrected by a factor of $ K_C = 1.4 \pm 0.2({\rm stat})$.
336 +
337 + The dominant sources of systematic uncertainty in $K_C$ are due to non-$t\bar{t} \to$~dilepton backgrounds,
338 + and the MET scale and resolution uncertainties, as summarized in Table~\ref{tab:victorysyst}.
339 + The impact of non-$t\bar{t}$-dilepton background is assessed
340 + by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton.
341 + The uncertainty is assessed as the larger of the differences between the nominal $K_C$ value and the values
342 + obtained using only $t\bar{t} \to$~dilepton MC and obtained by doubling the non $t\bar{t} \to$~dilepton component,
343 + giving an uncertainty of $0.03$.
344 +
345 + The uncertainty in $K_C$ due to the MET scale uncertainty is assessed by varying the hadronic energy scale using
346 + the same method as in~\cite{ref:top}, giving an uncertainty of 0.36.
347 + We also assess the impact of the MET resolution
348 + uncertainty on $K_C$ by applying a random smearing to the MET. For each event, we determine the expected MET resolution
349 + based on the sumJetPt, and smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%.
350 + The results show that $K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty.
351  
352 + Incorporating all the statistical and systematic uncertainties we find $K_C = 1.4 \pm 0.4$.
353  
354   \subsection{Signal Contamination}
355   \label{sec:sigcont}
# Line 243 | Line 383 | presence of the signal.
383   \caption{\label{tab:sigcont} Effects of signal contamination
384   for the two data-driven background estimates. The three columns give
385   the expected yield in the signal region and the background estimates
386 < using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.}
386 > using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 34.0~pb$^{-1}$.}
387   \begin{tabular}{lccc}
388   \hline
389              &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
390   \hline
391 < SM only     &      1.41       &      1.19    &             0.96  \\
392 < SM + LM0    &      7.88       &      4.24    &             2.28  \\
393 < SM + LM1    &      3.98       &      1.53    &             1.44  \\
391 > SM only     &       1.3      &      1.3    &       0.9        \\
392 > SM + LM0    &       9.9      &      6.1    &       2.4        \\
393 > SM + LM1    &       4.8      &      1.8    &       1.6        \\
394 > %SM only     &       1.27      &      1.27    &       0.92        \\
395 > %SM + LM0    &       7.39      &      4.38    &       1.93        \\
396 > %SM + LM1    &       3.77      &      1.62    &       1.41        \\
397   \hline
398   \end{tabular}
399   \end{center}
400   \end{table}
401  
259
260
261 %\begin{table}[htb]
262 %\begin{center}
263 %\caption{\label{tab:sigcontABCD} Effects of signal contamination
264 %for the background predictions of the ABCD method including LM0 or
265 %LM1.  Results
266 %are normalized to 30 pb$^{-1}$.}
267 %\begin{tabular}{|c|c||c|c||c|c|}
268 %\hline
269 %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
270 %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
271 %1.2        & 1.0            & 6.8          & 3.7           & 3.4          & 1.3 \\
272 %\hline
273 %\end{tabular}
274 %\end{center}
275 %\end{table}
276
277 %\begin{table}[htb]
278 %\begin{center}
279 %\caption{\label{tab:sigcontPT} Effects of signal contamination
280 %for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
281 %LM1.  Results
282 %are normalized to 30 pb$^{-1}$.}
283 %\begin{tabular}{|c|c||c|c||c|c|}
284 %\hline
285 %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
286 %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
287 %1.2        & 1.0            & 6.8          & 2.2           & 3.4          & 1.5 \\
288 %\hline
289 %\end{tabular}
290 %\end{center}
291 %\end{table}
292

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines