ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.28 by benhoob, Thu Dec 2 14:27:31 2010 UTC vs.
Revision 1.40 by benhoob, Wed Jan 12 00:24:58 2011 UTC

# Line 23 | Line 23 | detector.
23  
24   We find that in $t\bar{t}$ events SumJetPt and
25   \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 < as demonstrated in Figure~\ref{fig:uncor}.
26 > as demonstrated in Fig.~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
# Line 42 | Line 42 | sumJetPt plane to estimate the backgroun
42   \caption{\label{fig:uncor}\protect Distributions of SumJetPt
43   in MC $t\bar{t}$ events for different intervals of
44   MET$/\sqrt{\rm SumJetPt}$. h1, h2, and h3 refer to the MET$/\sqrt{\rm SumJetPt}$
45 < intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively.}
45 > intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively. }
46   \end{center}
47   \end{figure}
48  
49   \begin{figure}[tb]
50   \begin{center}
51 < \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
51 > \includegraphics[width=0.75\linewidth]{ttdil_uncor_38X.png}
52   \caption{\label{fig:abcdMC}\protect Distributions of MET$/\sqrt{\rm SumJetPt}$ vs.
53 < SumJetPt for SM Monte Carlo.  Here we also show our choice of ABCD regions.}
53 > SumJetPt for SM Monte Carlo.  Here we also show our choice of ABCD regions. The correlation coefficient
54 > ${\rm corr_{XY}}$ is computed for events falling in the ABCD regions.}
55   \end{center}
56   \end{figure}
57  
58  
59   Our choice of ABCD regions is shown in Figure~\ref{fig:abcdMC}.
60   The signal region is region D.  The expected number of events
61 < in the four regions for the SM Monte Carlo, as well as the BG
62 < prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
63 < luminosity of 35 pb$^{-1}$.  The ABCD method with chosen boundaries is accurate
64 < to about 20\%. As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties
65 < by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty,
66 < which we take as $\pm$5\% for SumJetPt and $\pm$2.5\% for MET/$\sqrt{\rm SumJetPt}$, since the
67 < uncertainty on this quantity partially cancels due to the fact that it is a ratio of correlated
68 < quantities. Based on these studies we assess a correction factor $k_{ABCD} = 1.2 \pm 0.2$ to the
69 < predicted yield using the ABCD method.
61 > in the four regions for the SM Monte Carlo, as well as the background
62 > prediction A $\times$ C / B are given in Table~\ref{tab:abcdMC} for an integrated
63 > luminosity of 34.0 pb$^{-1}$. In Table~\ref{tab:abcdsyst}, we test the stability of
64 > observed/predicted with respect to variations in the ABCD boundaries.
65 > Based on the results in Tables~\ref{tab:abcdMC} and~\ref{tab:abcdsyst}, we assess
66 > a systematic uncertainty of 20\% on the prediction of the ABCD method.
67 >
68 > %As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties
69 > %by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty,
70 > %which we take as $\pm$5\% for SumJetPt and $\pm$2.5\% for MET/$\sqrt{\rm SumJetPt}$, since the
71 > %uncertainty on this quantity partially cancels due to the fact that it is a ratio of correlated
72 > %quantities. Based on these studies we assess a correction factor $k_{ABCD} = 1.2 \pm 0.2$ to the
73 > %predicted yield using the ABCD method.
74  
75  
76   %{\color{red} Avi wants some statement about stability
# Line 75 | Line 80 | predicted yield using the ABCD method.
80   \begin{table}[ht]
81   \begin{center}
82   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
83 < 35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
83 > 34.0~pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
84   the signal region given by A $\times$ C / B. Here `SM other' is the sum
85   of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
86   $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
87   \begin{tabular}{lccccc}
88 + %%%official json v3, 38X MC (D6T ttbar and DY)
89   \hline
90 <              sample   &                   A   &                   B   &                   C   &                   D   &                      A $\times$ C / B  \\
90 >              sample                     &                   A   &                   B   &                   C   &                   D   &                PRED  \\
91   \hline
92 < $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &   8.27  $\pm$  0.18   &  32.16  $\pm$  0.35   &   4.69  $\pm$  0.13   &   1.05  $\pm$  0.06   &   1.21  $\pm$  0.04  \\
93 < $Z^0 \rightarrow \ell^{+}\ell^{-}$       &   0.22  $\pm$  0.11   &   1.54  $\pm$  0.29   &   0.05  $\pm$  0.05   &   0.16  $\pm$  0.09   &   0.01  $\pm$  0.01  \\
94 <            SM other                     &   0.54  $\pm$  0.03   &   2.28  $\pm$  0.12   &   0.23  $\pm$  0.03   &   0.07  $\pm$  0.01   &   0.05  $\pm$  0.01  \\
92 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &   8.44  $\pm$  0.18   &  32.83  $\pm$  0.35   &   4.78  $\pm$  0.14   &   1.07  $\pm$  0.06   &   1.23  $\pm$  0.05  \\
93 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &   0.17  $\pm$  0.08   &   1.18  $\pm$  0.22   &   0.04  $\pm$  0.04   &   0.12  $\pm$  0.07   &   0.01  $\pm$  0.01  \\
94 >            SM other                     &   0.53  $\pm$  0.03   &   2.26  $\pm$  0.11   &   0.23  $\pm$  0.03   &   0.07  $\pm$  0.01   &   0.05  $\pm$  0.01  \\
95   \hline
96 <         total SM MC                     &   9.03  $\pm$  0.21   &  35.97  $\pm$  0.46   &   4.97  $\pm$  0.15   &   1.29  $\pm$  0.11   &   1.25  $\pm$  0.05  \\
96 >         total SM MC                     &   9.14  $\pm$  0.20   &  36.26  $\pm$  0.43   &   5.05  $\pm$  0.14   &   1.27  $\pm$  0.10   &   1.27  $\pm$  0.05  \\
97   \hline
98   \end{tabular}
99   \end{center}
# Line 98 | Line 104 | $Z^0 \rightarrow \ell^{+}\ell^{-}$
104   \begin{table}[ht]
105   \begin{center}
106   \caption{\label{tab:abcdsyst}
101 {\bf \color{red} Do we need this study at all? Observed/predicted is consistent within stat uncertainties as the boundaries are varied- is it enough to simply state this fact in the text??? }
107   Results of the systematic study of the ABCD method by varying the boundaries
108   between the ABCD regions shown in Fig.~\ref{fig:abcdMC}. Here $x_1$ is the lower SumJetPt boundary and
109   $x_2$ is the boundary separating regions A and B from C and D, their nominal values are 125 and 300~GeV,
# Line 109 | Line 114 | respectively.}
114   \hline
115   $x_1$   &   $x_2$ & $y_1$   &   $y_2$ & Observed/Predicted \\
116   \hline
117 < nominal & nominal & nominal & nominal & $1.20 \pm 0.12$    \\
118 < +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.38 \pm 0.15$    \\
119 < +5\%    & +5\%    & nominal & nominal & $1.31 \pm 0.14$    \\
120 < nominal & nominal & +2.5\%  & +2.5\%  & $1.25 \pm 0.13$    \\
121 < nominal & +5\%    & nominal & +2.5\%  & $1.32 \pm 0.14$    \\
122 < nominal & -5\%    & nominal & -2.5\%  & $1.16 \pm 0.09$    \\
123 < -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.21 \pm 0.11$    \\
124 < +5\%    & +5\%    & -2.5\%  & -2.5\%  & $1.26 \pm 0.12$    \\
117 >
118 > nominal & nominal & nominal & nominal & $1.00 \pm 0.08$    \\
119 >
120 > +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.08 \pm 0.11$    \\
121 >
122 > +5\%    & +5\%    & nominal & nominal & $1.04 \pm 0.10$    \\
123 >
124 > nominal & nominal & +2.5\%  & +2.5\%  & $1.03 \pm 0.09$    \\
125 >
126 > nominal & +5\%    & nominal & +2.5\%  & $1.05 \pm 0.10$    \\
127 >
128 > nominal & -5\%    & nominal & -2.5\%  & $0.95 \pm 0.07$    \\
129 >
130 > -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.00 \pm 0.08$    \\
131 >
132 > +5\%    & +5\%    & -2.5\%  & -2.5\%  & $0.98 \pm 0.09$    \\
133   \hline
134   \end{tabular}
135   \end{center}
136   \end{table}
137  
138 +
139 + \clearpage
140 +
141   \subsection{Dilepton $P_T$ method}
142   \label{sec:victory}
143   This method is based on a suggestion by V. Pavlunin\cite{ref:victory},
# Line 142 | Line 158 | cut of 50 GeV, the rescaling factor is o
158  
159   \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
160   \begin{center}
161 < $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~}$
161 > $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~} = 1.5$
162   \end{center}
163  
164  
149 Monte Carlo studies give values of $K$ that are typically between 1.5 and 1.6,
150 depending on selection details.  
165   %%%TO BE REPLACED
166   %Given the integrated luminosity of the
167   %present dataset, the determination of $K$ in data is severely statistics
# Line 159 | Line 173 | depending on selection details.
173  
174   %\noindent {\color{red} For the 11 pb result we have used $K$ from data.}
175  
176 +
177 + \begin{figure}[bht]
178 + \begin{center}
179 + \includegraphics[width=0.75\linewidth]{genvictory_Dec13.png}
180 + \caption{\label{fig:genvictory}\protect Distributions $P_T(\ell \ell)$
181 + and $P_T(\nu \nu)$ (aka {\it genmet})
182 + in $t\bar{t} \to$ dilepton Monte Carlo at the
183 + generator level.  Events with $W \to \tau \to \ell$ are not included.
184 + No kinematical requirements have been made.}
185 + \end{center}
186 + \end{figure}
187 +
188 +
189   There are several effects that spoil the correspondance between \met and
190   $P_T(\ell\ell)$:
191   \begin{itemize}
# Line 166 | Line 193 | $P_T(\ell\ell)$:
193   parallel to the $W$ velocity while charged leptons are emitted prefertially
194   anti-parallel. Thus the $P_T(\nu\nu)$ distribution is harder
195   than the $P_T(\ell\ell)$ distribution for top dilepton events.
196 + This turns out to be the dominant effect and it is illustrated in
197 + Figure~\ref{fig:genvictory}.
198   \item The lepton selections results in $P_T$ and $\eta$ cuts on the individual
199   leptons that have no simple correspondance to the neutrino requirements.
200   \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
# Line 190 | Line 219 | We have studied these effects in SM Mont
219   reconstruction level studies, putting the various effects in one at a time.
220   For each configuration, we apply the data-driven method and report as figure
221   of merit the ratio of observed and predicted events in the signal region.
222 < The results are summarized in Table~\ref{tab:victorybad}.
222 > The figure of merit is calculated as follows
223 > \begin{itemize}
224 > \item We construct \met/$\sqrt{{\rm sumJetPt}}$
225 > and $P_T(\ell \ell)/\sqrt{{\rm sumJetPt}}$ (rescaled by the factor $K$ defined
226 > above) distributions.  
227 > \item The distributions are constructed using either
228 > GEN or RECO, and including or excluding various effects ({\em e.g.:}
229 > $t \to W \to \tau \to \ell$).  
230 > \item In all cases the $N_{jets} \ge 2$ and
231 > sumJetPt $>$ 300 GeV requirements are applied.
232 > \item ``observed events'' is the integral of the \met/$\sqrt{{\rm sumJetPt}}$ distribution
233 > above 8.5.
234 > \item ``predicted events'' is the integral of the $P_T(\ell \ell)/\sqrt{{\rm sumJetPt}}$ distribution
235 > above 8.5.
236 > \end{itemize}
237 > The results are summarized in Table~\ref{tab:victorybad}.  Distributions corresponding to
238 > lines 4 and 5 of Table~\ref{tab:victorybad} are shown in Figure~\ref{fig:victorybad}.
239  
240   \begin{table}[htb]
241   \begin{center}
242   \caption{\label{tab:victorybad}
198 {\bf \color{red} Need to either update this with 38X MC  or remove it }
243   Test of the data driven method in Monte Carlo
244 < under different assumptions.  See text for details.}
244 > under different assumptions, evaluated using Spring10 MC.  See text for details.}
245   \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
246   \hline
247   & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & Z veto & \met $>$ 50& obs/pred \\
# Line 215 | Line 259 | under different assumptions.  See text f
259   \end{table}
260  
261  
262 + \begin{figure}[bht]
263 + \begin{center}
264 + \includegraphics[width=0.48\linewidth]{genvictory_sqrtHt_Dec13.png}
265 + \includegraphics[width=0.48\linewidth]{victory_Dec13.png}
266 + \caption{\label{fig:victorybad}\protect Distributions
267 + of MET/$\sqrt{{\rm sumJetPt}}$ (black) and $P_T(\ell \ell)/\sqrt{{\rm sumJetPt}}$
268 + (red) in $t\bar{t} \to$ dilepton Monte Carlo
269 + after lepton kinematical cuts, $N_{jets} \ge 2$, and
270 + sumJetPt $>$ 300 GeV.  The left (right) plot is at the GEN (RECO) level
271 + and corresponds to line 4 (5) of Table~\ref{tab:victorybad}.}
272 + \end{center}
273 + \end{figure}
274 +
275 +
276 +
277   \begin{table}[htb]
278   \begin{center}
279   \caption{\label{tab:victorysyst}
280 < {Summary of uncertainties in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton.
280 > Summary of variations in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton.
281   In the first table, `up' and `down' refer to shifting the hadronic energy scale up and down by 5\%. In the second table, the quoted value
282   refers to the amount of additional smearing of the MET, as discussed in the text. In the third table, the normalization of all backgrounds
283 < other than $t\bar{t} \to$~dilepton is varied.
225 < {\bf \color{ref} Should I remove `observed' and `predicted' and show only the ratio? }}
226 <
283 > other than $t\bar{t} \to$~dilepton is varied. }
284   \begin{tabular}{ lcccc }
285   \hline
286         MET scale  &      Predicted       &       Observed       &       Obs/pred       \\
287   \hline
288 <        nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
289 <            up    &  0.92 $ \pm $ 0.11   &  1.53 $ \pm $ 0.12   &  1.66 $ \pm $ 0.23   \\
290 <          down    &  0.81 $ \pm $ 0.07   &  1.08 $ \pm $ 0.11   &  1.32 $ \pm $ 0.17   \\
291 < \hline
292 <
293 < \hline
294 <   MET smearing   &      Predicted       &       Observed        &       Obs/pred      \\
295 < \hline
296 <        nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
297 <           10\%   &  0.90 $ \pm $ 0.11   &  1.30 $ \pm $ 0.11   &  1.44 $ \pm $ 0.21   \\
298 <           20\%   &  0.84 $ \pm $ 0.07   &  1.36 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
299 <           30\%   &  1.05 $ \pm $ 0.18   &  1.32 $ \pm $ 0.11   &  1.27 $ \pm $ 0.24   \\
300 <           40\%   &  0.85 $ \pm $ 0.07   &  1.37 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
301 <           50\%   &  1.08 $ \pm $ 0.18   &  1.36 $ \pm $ 0.11   &  1.26 $ \pm $ 0.24   \\
302 < \hline
303 <
304 < \hline
305 <  non-$t\bar{t} \to$~dilepton scale factor   &          Predicted   &           Observed   &           Obs/pred   \\
249 < \hline
250 <   ttdil only                                &  0.77 $ \pm $ 0.07   &  1.05 $ \pm $ 0.06   &  1.36 $ \pm $ 0.14   \\
251 <   nominal                                   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
252 <   double non-ttdil yield                    &  1.06 $ \pm $ 0.18   &  1.52 $ \pm $ 0.20   &  1.43 $ \pm $ 0.30   \\
288 >        nominal   &  0.92 $ \pm $ 0.09   &  1.27 $ \pm $ 0.10   &   1.39 $ \pm $ 0.18  \\
289 >            up    &  0.90 $ \pm $ 0.09   &  1.58 $ \pm $ 0.10   &   1.75 $ \pm $ 0.21  \\
290 >          down    &  0.70 $ \pm $ 0.06   &  0.96 $ \pm $ 0.09   &   1.37 $ \pm $ 0.18  \\
291 > \hline
292 >   MET smearing   &      Predicted       &       Observed       &       Obs/pred       \\
293 > \hline
294 >        nominal   &  0.92 $ \pm $ 0.09   &  1.27 $ \pm $ 0.10   &   1.39 $ \pm $ 0.18  \\
295 >           10\%   &  0.88 $ \pm $ 0.09   &  1.28 $ \pm $ 0.10   &   1.47 $ \pm $ 0.19  \\
296 >           20\%   &  0.87 $ \pm $ 0.09   &  1.26 $ \pm $ 0.10   &   1.44 $ \pm $ 0.19  \\
297 >           30\%   &  1.03 $ \pm $ 0.17   &  1.33 $ \pm $ 0.10   &   1.29 $ \pm $ 0.23  \\
298 >           40\%   &  0.88 $ \pm $ 0.09   &  1.36 $ \pm $ 0.10   &   1.55 $ \pm $ 0.20  \\
299 >           50\%   &  0.80 $ \pm $ 0.07   &  1.39 $ \pm $ 0.10   &   1.73 $ \pm $ 0.19  \\
300 > \hline
301 >  non-$t\bar{t} \to$~dilepton bkg   &       Predicted   &           Observed   &           Obs/pred   \\
302 > \hline
303 >   ttdil only                       &   0.79 $ \pm $ 0.07   &   1.07 $ \pm $ 0.06   &   1.36 $ \pm $ 0.14   \\
304 >   nominal                          &   0.92 $ \pm $ 0.09   &   1.27 $ \pm $ 0.10   &   1.39 $ \pm $ 0.18   \\
305 >   double non-ttdil yield           &   1.04 $ \pm $ 0.15   &   1.47 $ \pm $ 0.16   &   1.40 $ \pm $ 0.25   \\
306   \hline
307   \end{tabular}
308   \end{center}
309   \end{table}
310  
258
259
311   The largest discrepancy between prediction and observation occurs on the first
312   line of Table~\ref{tab:victorybad}, {\em i.e.}, at the generator level with no
313   cuts.  We have verified that this effect is due to the polarization of
# Line 277 | Line 328 | events can have a significant impact on
328   An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
329   not include effects of spin correlations between the two top quarks.  
330   We have studied this effect at the generator level using Alpgen.  We find
331 < that the bias is at the few percent level.
331 > that the bias is (at most) at the few percent level.
332  
333 < Based on the results of Table~\ref{tab:victorybad}, we conclude that the
333 > Based on the results of Table~\ref{tab:victorysyst}, we conclude that the
334   naive data-driven background estimate based on $P_T{(\ell\ell)}$ needs to
335 < be corrected by a factor of $ K_C = 1.4 \pm 0.2(stat)$.
335 > be corrected by a factor of $ K_C = 1.4 \pm 0.2({\rm stat})$.
336  
337 < The 2 dominant sources of systematic uncertainty in $K_C$ are due to non-$t\bar{t} \to$~dilepton backgrounds,
338 < and the MET scale and resolution uncertainties. The impact of non-$t\bar{t}$-dilepton background is assessed
339 < by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton, as shown in Table~\ref{table_kc}.
340 < The systematic is assessed as the larger of the differences between the nominal $K_C$ value and the values
337 > The dominant sources of systematic uncertainty in $K_C$ are due to non-$t\bar{t} \to$~dilepton backgrounds,
338 > and the MET scale and resolution uncertainties, as summarized in Table~\ref{tab:victorysyst}.
339 > The impact of non-$t\bar{t}$-dilepton background is assessed
340 > by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton.
341 > The uncertainty is assessed as the larger of the differences between the nominal $K_C$ value and the values
342   obtained using only $t\bar{t} \to$~dilepton MC and obtained by doubling the non $t\bar{t} \to$~dilepton component,
343 < giving an uncertainty of $0.04$.
343 > giving an uncertainty of $0.03$.
344  
345   The uncertainty in $K_C$ due to the MET scale uncertainty is assessed by varying the hadronic energy scale using
346 < the same method as in~\ref{} and checking how much $K_C$ changes, as summarized in Table~\ref{tab:victorysyst}.
347 < This gives an uncertainty of 0.3. We also assess the impact of the MET resolution uncertainty on $K_C$ by applying
348 < a random smearing to the MET. For each event, we determine the expected MET resolution based on the sumJetPt, and
349 < smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%. The results show that
350 < $K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty.
346 > the same method as in~\cite{ref:top}, giving an uncertainty of 0.36.
347 > We also assess the impact of the MET resolution
348 > uncertainty on $K_C$ by applying a random smearing to the MET. For each event, we determine the expected MET resolution
349 > based on the sumJetPt, and smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%.
350 > The results show that $K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty.
351  
352   Incorporating all the statistical and systematic uncertainties we find $K_C = 1.4 \pm 0.4$.
353  
# Line 331 | Line 383 | presence of the signal.
383   \caption{\label{tab:sigcont} Effects of signal contamination
384   for the two data-driven background estimates. The three columns give
385   the expected yield in the signal region and the background estimates
386 < using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.}
386 > using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 34.0~pb$^{-1}$.}
387   \begin{tabular}{lccc}
388   \hline
389              &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
390   \hline
391 < SM only     &       1.29      &      1.25    &           0.92    \\
392 < SM + LM0    &       7.57      &      4.44    &           1.96    \\
393 < SM + LM1    &       3.85      &      1.60    &           1.43    \\
391 > SM only     &       1.3      &      1.3    &       0.9        \\
392 > SM + LM0    &       9.9      &      6.1    &       2.4        \\
393 > SM + LM1    &       4.8      &      1.8    &       1.6        \\
394 > %SM only     &       1.27      &      1.27    &       0.92        \\
395 > %SM + LM0    &       7.39      &      4.38    &       1.93        \\
396 > %SM + LM1    &       3.77      &      1.62    &       1.41        \\
397   \hline
398   \end{tabular}
399   \end{center}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines