42 |
|
\caption{\label{fig:uncor}\protect Distributions of SumJetPt |
43 |
|
in MC $t\bar{t}$ events for different intervals of |
44 |
|
MET$/\sqrt{\rm SumJetPt}$. h1, h2, and h3 refer to the MET$/\sqrt{\rm SumJetPt}$ |
45 |
< |
intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively.} |
45 |
> |
intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively. } |
46 |
|
\end{center} |
47 |
|
\end{figure} |
48 |
|
|
60 |
|
The signal region is region D. The expected number of events |
61 |
|
in the four regions for the SM Monte Carlo, as well as the background |
62 |
|
prediction A $\times$ C / B are given in Table~\ref{tab:abcdMC} for an integrated |
63 |
< |
luminosity of 35 pb$^{-1}$. In Table~\ref{tab:abcdsyst}, we test the stability of |
63 |
> |
luminosity of 34.0 pb$^{-1}$. In Table~\ref{tab:abcdsyst}, we test the stability of |
64 |
|
observed/predicted with respect to variations in the ABCD boundaries. |
65 |
|
Based on the results in Tables~\ref{tab:abcdMC} and~\ref{tab:abcdsyst}, we assess |
66 |
|
a systematic uncertainty of 20\% on the prediction of the ABCD method. |
80 |
|
\begin{table}[ht] |
81 |
|
\begin{center} |
82 |
|
\caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for |
83 |
< |
35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in |
83 |
> |
34.0~pb$^{-1}$ in the ABCD regions, as well as the predicted yield in |
84 |
|
the signal region given by A $\times$ C / B. Here `SM other' is the sum |
85 |
|
of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$, |
86 |
|
$W^{\pm}Z^0$, $Z^0Z^0$ and single top.} |
87 |
|
\begin{tabular}{lccccc} |
88 |
+ |
%%%official json v3, 38X MC (D6T ttbar and DY) |
89 |
|
\hline |
90 |
< |
sample & A & B & C & D & A $\times$ C / B \\ |
90 |
> |
sample & A & B & C & D & PRED \\ |
91 |
|
\hline |
92 |
< |
$t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 8.27 $\pm$ 0.18 & 32.16 $\pm$ 0.35 & 4.69 $\pm$ 0.13 & 1.05 $\pm$ 0.06 & 1.21 $\pm$ 0.04 \\ |
93 |
< |
$Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.22 $\pm$ 0.11 & 1.54 $\pm$ 0.29 & 0.05 $\pm$ 0.05 & 0.16 $\pm$ 0.09 & 0.01 $\pm$ 0.01 \\ |
94 |
< |
SM other & 0.54 $\pm$ 0.03 & 2.28 $\pm$ 0.12 & 0.23 $\pm$ 0.03 & 0.07 $\pm$ 0.01 & 0.05 $\pm$ 0.01 \\ |
92 |
> |
$t\bar{t}\rightarrow \ell^{+}\ell^{-}$ & 8.44 $\pm$ 0.18 & 32.83 $\pm$ 0.35 & 4.78 $\pm$ 0.14 & 1.07 $\pm$ 0.06 & 1.23 $\pm$ 0.05 \\ |
93 |
> |
$Z^0 \rightarrow \ell^{+}\ell^{-}$ & 0.17 $\pm$ 0.08 & 1.18 $\pm$ 0.22 & 0.04 $\pm$ 0.04 & 0.12 $\pm$ 0.07 & 0.01 $\pm$ 0.01 \\ |
94 |
> |
SM other & 0.53 $\pm$ 0.03 & 2.26 $\pm$ 0.11 & 0.23 $\pm$ 0.03 & 0.07 $\pm$ 0.01 & 0.05 $\pm$ 0.01 \\ |
95 |
|
\hline |
96 |
< |
total SM MC & 9.03 $\pm$ 0.21 & 35.97 $\pm$ 0.46 & 4.97 $\pm$ 0.15 & 1.29 $\pm$ 0.11 & 1.25 $\pm$ 0.05 \\ |
96 |
> |
total SM MC & 9.14 $\pm$ 0.20 & 36.26 $\pm$ 0.43 & 5.05 $\pm$ 0.14 & 1.27 $\pm$ 0.10 & 1.27 $\pm$ 0.05 \\ |
97 |
|
\hline |
98 |
|
\end{tabular} |
99 |
|
\end{center} |
114 |
|
\hline |
115 |
|
$x_1$ & $x_2$ & $y_1$ & $y_2$ & Observed/Predicted \\ |
116 |
|
\hline |
117 |
< |
nominal & nominal & nominal & nominal & $1.03 \pm 0.10$ \\ |
118 |
< |
+5\% & +5\% & +2.5\% & +2.5\% & $1.13 \pm 0.13$ \\ |
119 |
< |
+5\% & +5\% & nominal & nominal & $1.08 \pm 0.12$ \\ |
120 |
< |
nominal & nominal & +2.5\% & +2.5\% & $1.07 \pm 0.11$ \\ |
121 |
< |
nominal & +5\% & nominal & +2.5\% & $1.09 \pm 0.12$ \\ |
122 |
< |
nominal & -5\% & nominal & -2.5\% & $0.98 \pm 0.08$ \\ |
123 |
< |
-5\% & -5\% & +2.5\% & +2.5\% & $1.03 \pm 0.09$ \\ |
124 |
< |
+5\% & +5\% & -2.5\% & -2.5\% & $1.03 \pm 0.11$ \\ |
117 |
> |
|
118 |
> |
nominal & nominal & nominal & nominal & $1.00 \pm 0.08$ \\ |
119 |
> |
|
120 |
> |
+5\% & +5\% & +2.5\% & +2.5\% & $1.08 \pm 0.11$ \\ |
121 |
> |
|
122 |
> |
+5\% & +5\% & nominal & nominal & $1.04 \pm 0.10$ \\ |
123 |
> |
|
124 |
> |
nominal & nominal & +2.5\% & +2.5\% & $1.03 \pm 0.09$ \\ |
125 |
> |
|
126 |
> |
nominal & +5\% & nominal & +2.5\% & $1.05 \pm 0.10$ \\ |
127 |
> |
|
128 |
> |
nominal & -5\% & nominal & -2.5\% & $0.95 \pm 0.07$ \\ |
129 |
> |
|
130 |
> |
-5\% & -5\% & +2.5\% & +2.5\% & $1.00 \pm 0.08$ \\ |
131 |
> |
|
132 |
> |
+5\% & +5\% & -2.5\% & -2.5\% & $0.98 \pm 0.09$ \\ |
133 |
|
\hline |
134 |
|
\end{tabular} |
135 |
|
\end{center} |
136 |
|
\end{table} |
137 |
|
|
138 |
+ |
|
139 |
+ |
\clearpage |
140 |
+ |
|
141 |
|
\subsection{Dilepton $P_T$ method} |
142 |
|
\label{sec:victory} |
143 |
|
This method is based on a suggestion by V. Pavlunin\cite{ref:victory}, |
158 |
|
|
159 |
|
\newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}} |
160 |
|
\begin{center} |
161 |
< |
$ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~} = 1.52$ |
161 |
> |
$ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~} = 1.5$ |
162 |
|
\end{center} |
163 |
|
|
164 |
|
|
173 |
|
|
174 |
|
%\noindent {\color{red} For the 11 pb result we have used $K$ from data.} |
175 |
|
|
176 |
+ |
|
177 |
+ |
\begin{figure}[bht] |
178 |
+ |
\begin{center} |
179 |
+ |
\includegraphics[width=0.75\linewidth]{genvictory_Dec13.png} |
180 |
+ |
\caption{\label{fig:genvictory}\protect Distributions $P_T(\ell \ell)$ |
181 |
+ |
and $P_T(\nu \nu)$ (aka {\it genmet}) |
182 |
+ |
in $t\bar{t} \to$ dilepton Monte Carlo at the |
183 |
+ |
generator level. Events with $W \to \tau \to \ell$ are not included. |
184 |
+ |
No kinematical requirements have been made.} |
185 |
+ |
\end{center} |
186 |
+ |
\end{figure} |
187 |
+ |
|
188 |
+ |
|
189 |
|
There are several effects that spoil the correspondance between \met and |
190 |
|
$P_T(\ell\ell)$: |
191 |
|
\begin{itemize} |
193 |
|
parallel to the $W$ velocity while charged leptons are emitted prefertially |
194 |
|
anti-parallel. Thus the $P_T(\nu\nu)$ distribution is harder |
195 |
|
than the $P_T(\ell\ell)$ distribution for top dilepton events. |
196 |
+ |
This turns out to be the dominant effect and it is illustrated in |
197 |
+ |
Figure~\ref{fig:genvictory}. |
198 |
|
\item The lepton selections results in $P_T$ and $\eta$ cuts on the individual |
199 |
|
leptons that have no simple correspondance to the neutrino requirements. |
200 |
|
\item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and |
219 |
|
reconstruction level studies, putting the various effects in one at a time. |
220 |
|
For each configuration, we apply the data-driven method and report as figure |
221 |
|
of merit the ratio of observed and predicted events in the signal region. |
222 |
< |
The results are summarized in Table~\ref{tab:victorybad}. |
222 |
> |
The figure of merit is calculated as follows |
223 |
> |
\begin{itemize} |
224 |
> |
\item We construct \met/$\sqrt{{\rm sumJetPt}}$ |
225 |
> |
and $P_T(\ell \ell)/\sqrt{{\rm sumJetPt}}$ (rescaled by the factor $K$ defined |
226 |
> |
above) distributions. |
227 |
> |
\item The distributions are constructed using either |
228 |
> |
GEN or RECO, and including or excluding various effects ({\em e.g.:} |
229 |
> |
$t \to W \to \tau \to \ell$). |
230 |
> |
\item In all cases the $N_{jets} \ge 2$ and |
231 |
> |
sumJetPt $>$ 300 GeV requirements are applied. |
232 |
> |
\item ``observed events'' is the integral of the \met/$\sqrt{{\rm sumJetPt}}$ distribution |
233 |
> |
above 8.5. |
234 |
> |
\item ``predicted events'' is the integral of the $P_T(\ell \ell)/\sqrt{{\rm sumJetPt}}$ distribution |
235 |
> |
above 8.5. |
236 |
> |
\end{itemize} |
237 |
> |
The results are summarized in Table~\ref{tab:victorybad}. Distributions corresponding to |
238 |
> |
lines 4 and 5 of Table~\ref{tab:victorybad} are shown in Figure~\ref{fig:victorybad}. |
239 |
|
|
240 |
|
\begin{table}[htb] |
241 |
|
\begin{center} |
242 |
|
\caption{\label{tab:victorybad} |
243 |
|
Test of the data driven method in Monte Carlo |
244 |
< |
under different assumptions, evaluated using 36X MC. See text for details.} |
244 |
> |
under different assumptions, evaluated using Spring10 MC. See text for details.} |
245 |
|
\begin{tabular}{|l|c|c|c|c|c|c|c|c|} |
246 |
|
\hline |
247 |
|
& True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or & Lepton $P_T$ & Z veto & \met $>$ 50& obs/pred \\ |
259 |
|
\end{table} |
260 |
|
|
261 |
|
|
262 |
+ |
\begin{figure}[bht] |
263 |
+ |
\begin{center} |
264 |
+ |
\includegraphics[width=0.48\linewidth]{genvictory_sqrtHt_Dec13.png} |
265 |
+ |
\includegraphics[width=0.48\linewidth]{victory_Dec13.png} |
266 |
+ |
\caption{\label{fig:victorybad}\protect Distributions |
267 |
+ |
of MET/$\sqrt{{\rm sumJetPt}}$ (black) and $P_T(\ell \ell)/\sqrt{{\rm sumJetPt}}$ |
268 |
+ |
(red) in $t\bar{t} \to$ dilepton Monte Carlo |
269 |
+ |
after lepton kinematical cuts, $N_{jets} \ge 2$, and |
270 |
+ |
sumJetPt $>$ 300 GeV. The left (right) plot is at the GEN (RECO) level |
271 |
+ |
and corresponds to line 4 (5) of Table~\ref{tab:victorybad}.} |
272 |
+ |
\end{center} |
273 |
+ |
\end{figure} |
274 |
+ |
|
275 |
+ |
|
276 |
+ |
|
277 |
|
\begin{table}[htb] |
278 |
|
\begin{center} |
279 |
|
\caption{\label{tab:victorysyst} |
280 |
|
Summary of variations in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton. |
281 |
|
In the first table, `up' and `down' refer to shifting the hadronic energy scale up and down by 5\%. In the second table, the quoted value |
282 |
|
refers to the amount of additional smearing of the MET, as discussed in the text. In the third table, the normalization of all backgrounds |
283 |
< |
other than $t\bar{t} \to$~dilepton is varied.} |
283 |
> |
other than $t\bar{t} \to$~dilepton is varied. } |
284 |
|
\begin{tabular}{ lcccc } |
285 |
|
\hline |
286 |
|
MET scale & Predicted & Observed & Obs/pred \\ |
287 |
|
\hline |
288 |
< |
nominal & 0.92 $ \pm $ 0.11 & 1.29 $ \pm $ 0.11 & 1.40 $ \pm $ 0.20 \\ |
289 |
< |
up & 0.92 $ \pm $ 0.11 & 1.53 $ \pm $ 0.12 & 1.66 $ \pm $ 0.23 \\ |
290 |
< |
down & 0.81 $ \pm $ 0.07 & 1.08 $ \pm $ 0.11 & 1.32 $ \pm $ 0.17 \\ |
291 |
< |
\hline |
292 |
< |
MET smearing & Predicted & Observed & Obs/pred \\ |
293 |
< |
\hline |
294 |
< |
nominal & 0.92 $ \pm $ 0.11 & 1.29 $ \pm $ 0.11 & 1.40 $ \pm $ 0.20 \\ |
295 |
< |
10\% & 0.90 $ \pm $ 0.11 & 1.30 $ \pm $ 0.11 & 1.44 $ \pm $ 0.21 \\ |
296 |
< |
20\% & 0.84 $ \pm $ 0.07 & 1.36 $ \pm $ 0.11 & 1.61 $ \pm $ 0.19 \\ |
297 |
< |
30\% & 1.05 $ \pm $ 0.18 & 1.32 $ \pm $ 0.11 & 1.27 $ \pm $ 0.24 \\ |
298 |
< |
40\% & 0.85 $ \pm $ 0.07 & 1.37 $ \pm $ 0.11 & 1.61 $ \pm $ 0.19 \\ |
299 |
< |
50\% & 1.08 $ \pm $ 0.18 & 1.36 $ \pm $ 0.11 & 1.26 $ \pm $ 0.24 \\ |
300 |
< |
\hline |
301 |
< |
non-$t\bar{t} \to$~dilepton scale factor & Predicted & Observed & Obs/pred \\ |
302 |
< |
\hline |
303 |
< |
ttdil only & 0.77 $ \pm $ 0.07 & 1.05 $ \pm $ 0.06 & 1.36 $ \pm $ 0.14 \\ |
304 |
< |
nominal & 0.92 $ \pm $ 0.11 & 1.29 $ \pm $ 0.11 & 1.40 $ \pm $ 0.20 \\ |
305 |
< |
double non-ttdil yield & 1.06 $ \pm $ 0.18 & 1.52 $ \pm $ 0.20 & 1.43 $ \pm $ 0.30 \\ |
288 |
> |
nominal & 0.92 $ \pm $ 0.09 & 1.27 $ \pm $ 0.10 & 1.39 $ \pm $ 0.18 \\ |
289 |
> |
up & 0.90 $ \pm $ 0.09 & 1.58 $ \pm $ 0.10 & 1.75 $ \pm $ 0.21 \\ |
290 |
> |
down & 0.70 $ \pm $ 0.06 & 0.96 $ \pm $ 0.09 & 1.37 $ \pm $ 0.18 \\ |
291 |
> |
\hline |
292 |
> |
MET smearing & Predicted & Observed & Obs/pred \\ |
293 |
> |
\hline |
294 |
> |
nominal & 0.92 $ \pm $ 0.09 & 1.27 $ \pm $ 0.10 & 1.39 $ \pm $ 0.18 \\ |
295 |
> |
10\% & 0.88 $ \pm $ 0.09 & 1.28 $ \pm $ 0.10 & 1.47 $ \pm $ 0.19 \\ |
296 |
> |
20\% & 0.87 $ \pm $ 0.09 & 1.26 $ \pm $ 0.10 & 1.44 $ \pm $ 0.19 \\ |
297 |
> |
30\% & 1.03 $ \pm $ 0.17 & 1.33 $ \pm $ 0.10 & 1.29 $ \pm $ 0.23 \\ |
298 |
> |
40\% & 0.88 $ \pm $ 0.09 & 1.36 $ \pm $ 0.10 & 1.55 $ \pm $ 0.20 \\ |
299 |
> |
50\% & 0.80 $ \pm $ 0.07 & 1.39 $ \pm $ 0.10 & 1.73 $ \pm $ 0.19 \\ |
300 |
> |
\hline |
301 |
> |
non-$t\bar{t} \to$~dilepton bkg & Predicted & Observed & Obs/pred \\ |
302 |
> |
\hline |
303 |
> |
ttdil only & 0.79 $ \pm $ 0.07 & 1.07 $ \pm $ 0.06 & 1.36 $ \pm $ 0.14 \\ |
304 |
> |
nominal & 0.92 $ \pm $ 0.09 & 1.27 $ \pm $ 0.10 & 1.39 $ \pm $ 0.18 \\ |
305 |
> |
double non-ttdil yield & 1.04 $ \pm $ 0.15 & 1.47 $ \pm $ 0.16 & 1.40 $ \pm $ 0.25 \\ |
306 |
|
\hline |
307 |
|
\end{tabular} |
308 |
|
\end{center} |
309 |
|
\end{table} |
310 |
|
|
253 |
– |
|
254 |
– |
|
311 |
|
The largest discrepancy between prediction and observation occurs on the first |
312 |
|
line of Table~\ref{tab:victorybad}, {\em i.e.}, at the generator level with no |
313 |
|
cuts. We have verified that this effect is due to the polarization of |
328 |
|
An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does |
329 |
|
not include effects of spin correlations between the two top quarks. |
330 |
|
We have studied this effect at the generator level using Alpgen. We find |
331 |
< |
that the bias is at the few percent level. |
331 |
> |
that the bias is (at most) at the few percent level. |
332 |
|
|
333 |
|
Based on the results of Table~\ref{tab:victorysyst}, we conclude that the |
334 |
|
naive data-driven background estimate based on $P_T{(\ell\ell)}$ needs to |
340 |
|
by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton. |
341 |
|
The uncertainty is assessed as the larger of the differences between the nominal $K_C$ value and the values |
342 |
|
obtained using only $t\bar{t} \to$~dilepton MC and obtained by doubling the non $t\bar{t} \to$~dilepton component, |
343 |
< |
giving an uncertainty of $0.04$. |
343 |
> |
giving an uncertainty of $0.03$. |
344 |
|
|
345 |
|
The uncertainty in $K_C$ due to the MET scale uncertainty is assessed by varying the hadronic energy scale using |
346 |
< |
the same method as in~\cite{ref:top}, giving an uncertainty of 0.3. We also assess the impact of the MET resolution |
346 |
> |
the same method as in~\cite{ref:top}, giving an uncertainty of 0.36. |
347 |
> |
We also assess the impact of the MET resolution |
348 |
|
uncertainty on $K_C$ by applying a random smearing to the MET. For each event, we determine the expected MET resolution |
349 |
|
based on the sumJetPt, and smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%. |
350 |
|
The results show that $K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty. |
383 |
|
\caption{\label{tab:sigcont} Effects of signal contamination |
384 |
|
for the two data-driven background estimates. The three columns give |
385 |
|
the expected yield in the signal region and the background estimates |
386 |
< |
using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.} |
386 |
> |
using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 34.0~pb$^{-1}$.} |
387 |
|
\begin{tabular}{lccc} |
388 |
|
\hline |
389 |
|
& Yield & ABCD & $P_T(\ell \ell)$ \\ |
390 |
|
\hline |
391 |
< |
SM only & 1.29 & 1.25 & 0.92 \\ |
392 |
< |
SM + LM0 & 7.57 & 4.44 & 1.96 \\ |
393 |
< |
SM + LM1 & 3.85 & 1.60 & 1.43 \\ |
391 |
> |
SM only & 1.3 & 1.3 & 0.9 \\ |
392 |
> |
SM + LM0 & 9.9 & 6.1 & 2.4 \\ |
393 |
> |
SM + LM1 & 4.8 & 1.8 & 1.6 \\ |
394 |
> |
%SM only & 1.27 & 1.27 & 0.92 \\ |
395 |
> |
%SM + LM0 & 7.39 & 4.38 & 1.93 \\ |
396 |
> |
%SM + LM1 & 3.77 & 1.62 & 1.41 \\ |
397 |
|
\hline |
398 |
|
\end{tabular} |
399 |
|
\end{center} |