ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.36 by benhoob, Fri Dec 3 15:06:47 2010 UTC vs.
Revision 1.40 by benhoob, Wed Jan 12 00:24:58 2011 UTC

# Line 42 | Line 42 | sumJetPt plane to estimate the backgroun
42   \caption{\label{fig:uncor}\protect Distributions of SumJetPt
43   in MC $t\bar{t}$ events for different intervals of
44   MET$/\sqrt{\rm SumJetPt}$. h1, h2, and h3 refer to the MET$/\sqrt{\rm SumJetPt}$
45 < intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively.}
45 > intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively. }
46   \end{center}
47   \end{figure}
48  
# Line 60 | Line 60 | Our choice of ABCD regions is shown in F
60   The signal region is region D.  The expected number of events
61   in the four regions for the SM Monte Carlo, as well as the background
62   prediction A $\times$ C / B are given in Table~\ref{tab:abcdMC} for an integrated
63 < luminosity of 35 pb$^{-1}$. In Table~\ref{tab:abcdsyst}, we test the stability of
63 > luminosity of 34.0 pb$^{-1}$. In Table~\ref{tab:abcdsyst}, we test the stability of
64   observed/predicted with respect to variations in the ABCD boundaries.
65   Based on the results in Tables~\ref{tab:abcdMC} and~\ref{tab:abcdsyst}, we assess
66   a systematic uncertainty of 20\% on the prediction of the ABCD method.
# Line 80 | Line 80 | a systematic uncertainty of 20\% on the
80   \begin{table}[ht]
81   \begin{center}
82   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
83 < 35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
83 > 34.0~pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
84   the signal region given by A $\times$ C / B. Here `SM other' is the sum
85   of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
86   $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
87   \begin{tabular}{lccccc}
88 + %%%official json v3, 38X MC (D6T ttbar and DY)
89   \hline
90 <              sample   &                   A   &                   B   &                   C   &                   D   &                      A $\times$ C / B  \\
90 >              sample                     &                   A   &                   B   &                   C   &                   D   &                PRED  \\
91   \hline
92 < $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &   8.27  $\pm$  0.18   &  32.16  $\pm$  0.35   &   4.69  $\pm$  0.13   &   1.05  $\pm$  0.06   &   1.21  $\pm$  0.04  \\
93 < $Z^0 \rightarrow \ell^{+}\ell^{-}$       &   0.22  $\pm$  0.11   &   1.54  $\pm$  0.29   &   0.05  $\pm$  0.05   &   0.16  $\pm$  0.09   &   0.01  $\pm$  0.01  \\
94 <            SM other                     &   0.54  $\pm$  0.03   &   2.28  $\pm$  0.12   &   0.23  $\pm$  0.03   &   0.07  $\pm$  0.01   &   0.05  $\pm$  0.01  \\
92 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &   8.44  $\pm$  0.18   &  32.83  $\pm$  0.35   &   4.78  $\pm$  0.14   &   1.07  $\pm$  0.06   &   1.23  $\pm$  0.05  \\
93 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &   0.17  $\pm$  0.08   &   1.18  $\pm$  0.22   &   0.04  $\pm$  0.04   &   0.12  $\pm$  0.07   &   0.01  $\pm$  0.01  \\
94 >            SM other                     &   0.53  $\pm$  0.03   &   2.26  $\pm$  0.11   &   0.23  $\pm$  0.03   &   0.07  $\pm$  0.01   &   0.05  $\pm$  0.01  \\
95   \hline
96 <         total SM MC                     &   9.03  $\pm$  0.21   &  35.97  $\pm$  0.46   &   4.97  $\pm$  0.15   &   1.29  $\pm$  0.11   &   1.25  $\pm$  0.05  \\
96 >         total SM MC                     &   9.14  $\pm$  0.20   &  36.26  $\pm$  0.43   &   5.05  $\pm$  0.14   &   1.27  $\pm$  0.10   &   1.27  $\pm$  0.05  \\
97   \hline
98   \end{tabular}
99   \end{center}
# Line 113 | Line 114 | respectively.}
114   \hline
115   $x_1$   &   $x_2$ & $y_1$   &   $y_2$ & Observed/Predicted \\
116   \hline
117 < nominal & nominal & nominal & nominal & $1.03 \pm 0.10$    \\
118 < +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.13 \pm 0.13$    \\
119 < +5\%    & +5\%    & nominal & nominal & $1.08 \pm 0.12$    \\
120 < nominal & nominal & +2.5\%  & +2.5\%  & $1.07 \pm 0.11$    \\
121 < nominal & +5\%    & nominal & +2.5\%  & $1.09 \pm 0.12$    \\
122 < nominal & -5\%    & nominal & -2.5\%  & $0.98 \pm 0.08$    \\
123 < -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.03 \pm 0.09$    \\
124 < +5\%    & +5\%    & -2.5\%  & -2.5\%  & $1.03 \pm 0.11$    \\
117 >
118 > nominal & nominal & nominal & nominal & $1.00 \pm 0.08$    \\
119 >
120 > +5\%    & +5\%    & +2.5\%  & +2.5\%  & $1.08 \pm 0.11$    \\
121 >
122 > +5\%    & +5\%    & nominal & nominal & $1.04 \pm 0.10$    \\
123 >
124 > nominal & nominal & +2.5\%  & +2.5\%  & $1.03 \pm 0.09$    \\
125 >
126 > nominal & +5\%    & nominal & +2.5\%  & $1.05 \pm 0.10$    \\
127 >
128 > nominal & -5\%    & nominal & -2.5\%  & $0.95 \pm 0.07$    \\
129 >
130 > -5\%    & -5\%    & +2.5\%  & +2.5\%  & $1.00 \pm 0.08$    \\
131 >
132 > +5\%    & +5\%    & -2.5\%  & -2.5\%  & $0.98 \pm 0.09$    \\
133   \hline
134   \end{tabular}
135   \end{center}
136   \end{table}
137  
138 +
139 + \clearpage
140 +
141   \subsection{Dilepton $P_T$ method}
142   \label{sec:victory}
143   This method is based on a suggestion by V. Pavlunin\cite{ref:victory},
# Line 146 | Line 158 | cut of 50 GeV, the rescaling factor is o
158  
159   \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
160   \begin{center}
161 < $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~} = 1.52$
161 > $ K = \frac{\int_0^{\infty} {\cal N}(\ptll)~~d\ptll~}{\int_{50}^{\infty} {\cal N}(\ptll)~~d\ptll~} = 1.5$
162   \end{center}
163  
164  
# Line 161 | Line 173 | $ K = \frac{\int_0^{\infty} {\cal N}(\pt
173  
174   %\noindent {\color{red} For the 11 pb result we have used $K$ from data.}
175  
176 +
177 + \begin{figure}[bht]
178 + \begin{center}
179 + \includegraphics[width=0.75\linewidth]{genvictory_Dec13.png}
180 + \caption{\label{fig:genvictory}\protect Distributions $P_T(\ell \ell)$
181 + and $P_T(\nu \nu)$ (aka {\it genmet})
182 + in $t\bar{t} \to$ dilepton Monte Carlo at the
183 + generator level.  Events with $W \to \tau \to \ell$ are not included.
184 + No kinematical requirements have been made.}
185 + \end{center}
186 + \end{figure}
187 +
188 +
189   There are several effects that spoil the correspondance between \met and
190   $P_T(\ell\ell)$:
191   \begin{itemize}
# Line 168 | Line 193 | $P_T(\ell\ell)$:
193   parallel to the $W$ velocity while charged leptons are emitted prefertially
194   anti-parallel. Thus the $P_T(\nu\nu)$ distribution is harder
195   than the $P_T(\ell\ell)$ distribution for top dilepton events.
196 + This turns out to be the dominant effect and it is illustrated in
197 + Figure~\ref{fig:genvictory}.
198   \item The lepton selections results in $P_T$ and $\eta$ cuts on the individual
199   leptons that have no simple correspondance to the neutrino requirements.
200   \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
# Line 192 | Line 219 | We have studied these effects in SM Mont
219   reconstruction level studies, putting the various effects in one at a time.
220   For each configuration, we apply the data-driven method and report as figure
221   of merit the ratio of observed and predicted events in the signal region.
222 < The results are summarized in Table~\ref{tab:victorybad}.
222 > The figure of merit is calculated as follows
223 > \begin{itemize}
224 > \item We construct \met/$\sqrt{{\rm sumJetPt}}$
225 > and $P_T(\ell \ell)/\sqrt{{\rm sumJetPt}}$ (rescaled by the factor $K$ defined
226 > above) distributions.  
227 > \item The distributions are constructed using either
228 > GEN or RECO, and including or excluding various effects ({\em e.g.:}
229 > $t \to W \to \tau \to \ell$).  
230 > \item In all cases the $N_{jets} \ge 2$ and
231 > sumJetPt $>$ 300 GeV requirements are applied.
232 > \item ``observed events'' is the integral of the \met/$\sqrt{{\rm sumJetPt}}$ distribution
233 > above 8.5.
234 > \item ``predicted events'' is the integral of the $P_T(\ell \ell)/\sqrt{{\rm sumJetPt}}$ distribution
235 > above 8.5.
236 > \end{itemize}
237 > The results are summarized in Table~\ref{tab:victorybad}.  Distributions corresponding to
238 > lines 4 and 5 of Table~\ref{tab:victorybad} are shown in Figure~\ref{fig:victorybad}.
239  
240   \begin{table}[htb]
241   \begin{center}
242   \caption{\label{tab:victorybad}
243   Test of the data driven method in Monte Carlo
244 < under different assumptions, evaluated using 36X MC.  See text for details.}
244 > under different assumptions, evaluated using Spring10 MC.  See text for details.}
245   \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
246   \hline
247   & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & Z veto & \met $>$ 50& obs/pred \\
# Line 216 | Line 259 | under different assumptions, evaluated u
259   \end{table}
260  
261  
262 + \begin{figure}[bht]
263 + \begin{center}
264 + \includegraphics[width=0.48\linewidth]{genvictory_sqrtHt_Dec13.png}
265 + \includegraphics[width=0.48\linewidth]{victory_Dec13.png}
266 + \caption{\label{fig:victorybad}\protect Distributions
267 + of MET/$\sqrt{{\rm sumJetPt}}$ (black) and $P_T(\ell \ell)/\sqrt{{\rm sumJetPt}}$
268 + (red) in $t\bar{t} \to$ dilepton Monte Carlo
269 + after lepton kinematical cuts, $N_{jets} \ge 2$, and
270 + sumJetPt $>$ 300 GeV.  The left (right) plot is at the GEN (RECO) level
271 + and corresponds to line 4 (5) of Table~\ref{tab:victorybad}.}
272 + \end{center}
273 + \end{figure}
274 +
275 +
276 +
277   \begin{table}[htb]
278   \begin{center}
279   \caption{\label{tab:victorysyst}
280   Summary of variations in $K_C$ due to the MET scale and resolution uncertainty, and to backgrounds other than $t\bar{t} \to$~dilepton.
281   In the first table, `up' and `down' refer to shifting the hadronic energy scale up and down by 5\%. In the second table, the quoted value
282   refers to the amount of additional smearing of the MET, as discussed in the text. In the third table, the normalization of all backgrounds
283 < other than $t\bar{t} \to$~dilepton is varied.}
283 > other than $t\bar{t} \to$~dilepton is varied. }
284   \begin{tabular}{ lcccc }
285   \hline
286         MET scale  &      Predicted       &       Observed       &       Obs/pred       \\
287   \hline
288 <        nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
289 <            up    &  0.92 $ \pm $ 0.11   &  1.53 $ \pm $ 0.12   &  1.66 $ \pm $ 0.23   \\
290 <          down    &  0.81 $ \pm $ 0.07   &  1.08 $ \pm $ 0.11   &  1.32 $ \pm $ 0.17   \\
291 < \hline
292 <   MET smearing   &      Predicted       &       Observed        &       Obs/pred      \\
293 < \hline
294 <        nominal   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
295 <           10\%   &  0.90 $ \pm $ 0.11   &  1.30 $ \pm $ 0.11   &  1.44 $ \pm $ 0.21   \\
296 <           20\%   &  0.84 $ \pm $ 0.07   &  1.36 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
297 <           30\%   &  1.05 $ \pm $ 0.18   &  1.32 $ \pm $ 0.11   &  1.27 $ \pm $ 0.24   \\
298 <           40\%   &  0.85 $ \pm $ 0.07   &  1.37 $ \pm $ 0.11   &  1.61 $ \pm $ 0.19   \\
299 <           50\%   &  1.08 $ \pm $ 0.18   &  1.36 $ \pm $ 0.11   &  1.26 $ \pm $ 0.24   \\
300 < \hline
301 <  non-$t\bar{t} \to$~dilepton scale factor   &          Predicted   &           Observed   &           Obs/pred   \\
302 < \hline
303 <   ttdil only                                &  0.77 $ \pm $ 0.07   &  1.05 $ \pm $ 0.06   &  1.36 $ \pm $ 0.14   \\
304 <   nominal                                   &  0.92 $ \pm $ 0.11   &  1.29 $ \pm $ 0.11   &  1.40 $ \pm $ 0.20   \\
305 <   double non-ttdil yield                    &  1.06 $ \pm $ 0.18   &  1.52 $ \pm $ 0.20   &  1.43 $ \pm $ 0.30   \\
288 >        nominal   &  0.92 $ \pm $ 0.09   &  1.27 $ \pm $ 0.10   &   1.39 $ \pm $ 0.18  \\
289 >            up    &  0.90 $ \pm $ 0.09   &  1.58 $ \pm $ 0.10   &   1.75 $ \pm $ 0.21  \\
290 >          down    &  0.70 $ \pm $ 0.06   &  0.96 $ \pm $ 0.09   &   1.37 $ \pm $ 0.18  \\
291 > \hline
292 >   MET smearing   &      Predicted       &       Observed       &       Obs/pred       \\
293 > \hline
294 >        nominal   &  0.92 $ \pm $ 0.09   &  1.27 $ \pm $ 0.10   &   1.39 $ \pm $ 0.18  \\
295 >           10\%   &  0.88 $ \pm $ 0.09   &  1.28 $ \pm $ 0.10   &   1.47 $ \pm $ 0.19  \\
296 >           20\%   &  0.87 $ \pm $ 0.09   &  1.26 $ \pm $ 0.10   &   1.44 $ \pm $ 0.19  \\
297 >           30\%   &  1.03 $ \pm $ 0.17   &  1.33 $ \pm $ 0.10   &   1.29 $ \pm $ 0.23  \\
298 >           40\%   &  0.88 $ \pm $ 0.09   &  1.36 $ \pm $ 0.10   &   1.55 $ \pm $ 0.20  \\
299 >           50\%   &  0.80 $ \pm $ 0.07   &  1.39 $ \pm $ 0.10   &   1.73 $ \pm $ 0.19  \\
300 > \hline
301 >  non-$t\bar{t} \to$~dilepton bkg   &       Predicted   &           Observed   &           Obs/pred   \\
302 > \hline
303 >   ttdil only                       &   0.79 $ \pm $ 0.07   &   1.07 $ \pm $ 0.06   &   1.36 $ \pm $ 0.14   \\
304 >   nominal                          &   0.92 $ \pm $ 0.09   &   1.27 $ \pm $ 0.10   &   1.39 $ \pm $ 0.18   \\
305 >   double non-ttdil yield           &   1.04 $ \pm $ 0.15   &   1.47 $ \pm $ 0.16   &   1.40 $ \pm $ 0.25   \\
306   \hline
307   \end{tabular}
308   \end{center}
309   \end{table}
310  
253
254
311   The largest discrepancy between prediction and observation occurs on the first
312   line of Table~\ref{tab:victorybad}, {\em i.e.}, at the generator level with no
313   cuts.  We have verified that this effect is due to the polarization of
# Line 272 | Line 328 | events can have a significant impact on
328   An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
329   not include effects of spin correlations between the two top quarks.  
330   We have studied this effect at the generator level using Alpgen.  We find
331 < that the bias is at the few percent level.
331 > that the bias is (at most) at the few percent level.
332  
333   Based on the results of Table~\ref{tab:victorysyst}, we conclude that the
334   naive data-driven background estimate based on $P_T{(\ell\ell)}$ needs to
# Line 284 | Line 340 | The impact of non-$t\bar{t}$-dilepton ba
340   by varying the yield of all backgrounds except for $t\bar{t} \to$~dilepton.
341   The uncertainty is assessed as the larger of the differences between the nominal $K_C$ value and the values
342   obtained using only $t\bar{t} \to$~dilepton MC and obtained by doubling the non $t\bar{t} \to$~dilepton component,
343 < giving an uncertainty of $0.04$.
343 > giving an uncertainty of $0.03$.
344  
345   The uncertainty in $K_C$ due to the MET scale uncertainty is assessed by varying the hadronic energy scale using
346 < the same method as in~\cite{ref:top}, giving an uncertainty of 0.3. We also assess the impact of the MET resolution
346 > the same method as in~\cite{ref:top}, giving an uncertainty of 0.36.
347 > We also assess the impact of the MET resolution
348   uncertainty on $K_C$ by applying a random smearing to the MET. For each event, we determine the expected MET resolution
349   based on the sumJetPt, and smear the MET to simulate an increase in the resolution of 10\%, 20\%, 30\%, 40\% and 50\%.
350   The results show that $K_C$ does not depend strongly on the MET resolution and we therefore do not assess any uncertainty.
# Line 326 | Line 383 | presence of the signal.
383   \caption{\label{tab:sigcont} Effects of signal contamination
384   for the two data-driven background estimates. The three columns give
385   the expected yield in the signal region and the background estimates
386 < using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.}
386 > using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 34.0~pb$^{-1}$.}
387   \begin{tabular}{lccc}
388   \hline
389              &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
390   \hline
391 < SM only     &       1.29      &      1.25    &           0.92    \\
392 < SM + LM0    &       7.57      &      4.44    &           1.96    \\
393 < SM + LM1    &       3.85      &      1.60    &           1.43    \\
391 > SM only     &       1.3      &      1.3    &       0.9        \\
392 > SM + LM0    &       9.9      &      6.1    &       2.4        \\
393 > SM + LM1    &       4.8      &      1.8    &       1.6        \\
394 > %SM only     &       1.27      &      1.27    &       0.92        \\
395 > %SM + LM0    &       7.39      &      4.38    &       1.93        \\
396 > %SM + LM1    &       3.77      &      1.62    &       1.41        \\
397   \hline
398   \end{tabular}
399   \end{center}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines