12 |
|
from $W$-decays, which is reconstructed as \met in the |
13 |
|
detector. |
14 |
|
|
15 |
< |
in 30 pb$^{-1}$ we expect $\approx$ 1 SM event in |
15 |
> |
In 30 pb$^{-1}$ we expect $\approx$ 1 SM event in |
16 |
|
the signal region. The expectations from the LMO |
17 |
< |
and LM1 SUSY benchmark points are {\color{red} XX} and |
18 |
< |
{\color{red} XX} events respectively. |
17 |
> |
and LM1 SUSY benchmark points are 5.6 and |
18 |
> |
2.2 events respectively. {\color{red} I took these |
19 |
> |
numbers from the twiki, rescaling from 11.06 to 30/pb. |
20 |
> |
They seem too large...are they really right?} |
21 |
|
|
22 |
|
|
23 |
|
\subsection{ABCD method} |
40 |
|
|
41 |
|
\begin{figure}[bt] |
42 |
|
\begin{center} |
43 |
< |
\includegraphics[width=0.75\linewidth]{abcdMC.jpg} |
43 |
> |
\includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf} |
44 |
|
\caption{\label{fig:abcdMC}\protect Distributions of SumJetPt |
45 |
|
vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo. Here we also |
46 |
< |
show our choice of ABCD regions. {\color{red} We need a better |
45 |
< |
picture with the letters A-B-C-D and with the numerical values |
46 |
< |
of the boundaries clearly indicated.}} |
46 |
> |
show our choice of ABCD regions.} |
47 |
|
\end{center} |
48 |
|
\end{figure} |
49 |
|
|
53 |
|
in the four regions for the SM Monte Carlo, as well as the BG |
54 |
|
prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated |
55 |
|
luminosity of 30 pb$^{-1}$. The ABCD method is accurate |
56 |
< |
to about 10\%. |
56 |
> |
to about 10\%. {\color{red} Avi wants some statement about stability |
57 |
> |
wrt changes in regions. I am not sure that we have done it and |
58 |
> |
I am not sure it is necessary (Claudio).} |
59 |
|
|
60 |
|
\begin{table}[htb] |
61 |
|
\begin{center} |
64 |
|
\begin{tabular}{|l|c|c|c|c||c|} |
65 |
|
\hline |
66 |
|
Sample & A & B & C & D & AC/D \\ \hline |
67 |
< |
ttdil & 6.4 & 28.4 & 4.2 & 1.0 & 0.9 \\ |
68 |
< |
Zjets & 0.0 & 1.3 & 0.2 & 0.0 & 0.0 \\ |
69 |
< |
Other SM & 0.6 & 2.1 & 0.2 & 0.1 & 0.0 \\ \hline |
70 |
< |
total MC & 7.0 & 31.8 & 4.5 & 1.1 & 1.0 \\ \hline |
67 |
> |
ttdil & 6.9 & 28.6 & 4.2 & 1.0 & 1.0 \\ |
68 |
> |
Zjets & 0.0 & 1.3 & 0.1 & 0.1 & 0.0 \\ |
69 |
> |
Other SM & 0.5 & 2.0 & 0.1 & 0.1 & 0.0 \\ \hline |
70 |
> |
total MC & 7.4 & 31.9 & 4.4 & 1.2 & 1.0 \\ \hline |
71 |
|
\end{tabular} |
72 |
|
\end{center} |
73 |
|
\end{table} |
135 |
|
under different assumptions. See text for details.} |
136 |
|
\begin{tabular}{|l|c|c|c|c|c|c|c|} |
137 |
|
\hline |
138 |
< |
& True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or & Lepton $P_T$ & \met $>$ 50& obs/pred \\ |
138 |
> |
& True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or & Z Veto, Lepton $P_T$ & \met $>$ 50& obs/pred \\ |
139 |
|
& included & included & included & RECOSIM & and $\eta$ cuts & & \\ \hline |
140 |
< |
1&Y & N & N & GEN & N & N & \\ |
141 |
< |
2&Y & N & N & GEN & Y & N & \\ |
142 |
< |
3&Y & N & N & GEN & Y & Y & \\ |
143 |
< |
4&Y & N & N & RECOSIM & Y & Y & \\ |
144 |
< |
5&Y & Y & N & RECOSIM & Y & Y & \\ |
145 |
< |
6&Y & Y & Y & RECOSIM & Y & Y & \\ |
140 |
> |
1&Y & N & N & GEN & N & N & 2.16 \\ |
141 |
> |
2&Y & N & N & GEN & Y & N & 1.48 \\ |
142 |
> |
3&Y & N & N & GEN & Y & Y & 1.52 \\ |
143 |
> |
4&Y & N & N & RECOSIM & Y & Y & 1.51 \\ |
144 |
> |
5&Y & Y & N & RECOSIM & Y & Y & 1.58 \\ |
145 |
> |
6&Y & Y & Y & RECOSIM & Y & Y & 1.18 \\ |
146 |
|
\hline |
147 |
|
\end{tabular} |
148 |
|
\end{center} |
195 |
|
with $P_T(\ell \ell) = \met$, an excess of ev ents would be seen |
196 |
|
in the ABCD method but not in the $P_T(\ell \ell)$ method. |
197 |
|
|
198 |
+ |
|
199 |
|
The LM points are benchmarks for SUSY analyses at CMS. The effects |
200 |
|
of signal contaminations for a couple such points are summarized |
201 |
|
in Table~\ref{tab:sigcontABCD} and~\ref{tab:sigcontPT}. |