ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.2 by claudioc, Fri Oct 29 02:29:40 2010 UTC vs.
Revision 1.9 by claudioc, Fri Nov 5 23:07:42 2010 UTC

# Line 12 | Line 12 | nearly the same as the $P_T$ of the pair
12   from $W$-decays, which is reconstructed as \met in the
13   detector.
14  
15 < in 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
15 > In 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
16   the signal region.  The expectations from the LMO
17 < and LM1 SUSY benchmark points are {\color{red} XX} and
18 < {\color{red} XX} events respectively.
17 > and LM1 SUSY benchmark points are 5.6 and
18 > 2.2 events respectively.
19 > %{\color{red} I took these
20 > %numbers from the twiki, rescaling from 11.06 to 30/pb.
21 > %They seem too large...are they really right?}
22  
23  
24   \subsection{ABCD method}
# Line 38 | Line 41 | MET$/\sqrt{\rm SumJetPt}$.}
41  
42   \begin{figure}[bt]
43   \begin{center}
44 < \includegraphics[width=0.75\linewidth]{abcdMC.jpg}
44 > \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
45   \caption{\label{fig:abcdMC}\protect Distributions of SumJetPt
46   vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo.  Here we also
47 < show our choice of ABCD regions. {\color{red} We need a better
45 < picture with the letters A-B-C-D and with the numerical values
46 < of the boundaries clearly indicated.}}
47 > show our choice of ABCD regions.}
48   \end{center}
49   \end{figure}
50  
# Line 53 | Line 54 | The signal region is region D.  The expe
54   in the four regions for the SM Monte Carlo, as well as the BG
55   prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
56   luminosity of 30 pb$^{-1}$.  The ABCD method is accurate
57 < to about 10\%.
57 > to about 10\%.
58 > %{\color{red} Avi wants some statement about stability
59 > %wrt changes in regions.  I am not sure that we have done it and
60 > %I am not sure it is necessary (Claudio).}
61  
62   \begin{table}[htb]
63   \begin{center}
# Line 62 | Line 66 | to about 10\%.
66   \begin{tabular}{|l|c|c|c|c||c|}
67   \hline
68   Sample   & A   & B    & C   & D   & AC/D \\ \hline
69 < ttdil    & 6.4 & 28.4 & 4.2 & 1.0 & 0.9  \\
70 < Zjets    & 0.0 & 1.3  & 0.2 & 0.0 & 0.0  \\
71 < Other SM & 0.6 & 2.1  & 0.2 & 0.1 & 0.0  \\ \hline
72 < total MC & 7.0 & 31.8 & 4.5 & 1.1 & 1.0 \\ \hline
69 > ttdil    & 6.9 & 28.6 & 4.2 & 1.0 & 1.0  \\
70 > Zjets    & 0.0 & 1.3  & 0.1 & 0.1 & 0.0  \\
71 > Other SM & 0.5 & 2.0  & 0.1 & 0.1 & 0.0  \\ \hline
72 > total MC & 7.4 & 31.9 & 4.4 & 1.2 & 1.0 \\ \hline
73   \end{tabular}
74   \end{center}
75   \end{table}
# Line 95 | Line 99 | $ K = \frac{\int_0^{\infty} {\cal N}(\pt
99  
100  
101   Monte Carlo studies give values of $K$ that are typically between 1.5 and 1.6,
102 < depending on selection details.
102 > depending on selection details.   Given the integrated luminosity of the
103 > present dataset, the determination of $K$ in data is severely statistics
104 > limited.  Thus, we take $K$ from $t\bar{t}$ Monte Carlo as
105 >
106 > \begin{center}
107 > $ K_{MC} = \frac{\int_0^{\infty} {\cal N}(\met)~~d\met~}{\int_{50}^{\infty} {\cal N}(\met)~~d\met~}$
108 > \end{center}
109 >
110 > \noindent {\color{red} For the 11 pb result we have used $K$ from data.}
111  
112   There are several effects that spoil the correspondance between \met and
113   $P_T(\ell\ell)$:
# Line 131 | Line 143 | The results are summarized in Table~\ref
143   \begin{center}
144   \caption{\label{tab:victorybad} Test of the data driven method in Monte Carlo
145   under different assumptions.  See text for details.}
146 < \begin{tabular}{|l|c|c|c|c|c|c|c|}
146 > \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
147   \hline
148 < & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & \met $>$ 50& obs/pred \\
149 < & included                 & included  & included & RECOSIM & and $\eta$ cuts &      &     \\ \hline
150 < 1&Y                        &     N     &   N      &  GEN    &   N             &   N  &       \\
151 < 2&Y                        &     N     &   N      &  GEN    &   Y             &   N  &   \\
152 < 3&Y                        &     N     &   N      &  GEN    &   Y             &   Y  &   \\
153 < 4&Y                        &     N     &   N      & RECOSIM &   Y             &   Y  &   \\
154 < 5&Y                        &     Y     &   N      & RECOSIM &   Y             &   Y  &   \\
155 < 6&Y                        &     Y     &   Y      & RECOSIM &   Y             &   Y  &   \\
148 > & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & Z veto & \met $>$ 50& obs/pred \\
149 > & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &  \\ \hline
150 > 1&Y                        &     N          &   N      &  GEN    &   N             &   N    & N          & 1.90  \\
151 > 2&Y                        &     N          &   N      &  GEN    &   Y             &   N    & N          & 1.64  \\
152 > 3&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & N          & 1.59  \\
153 > 4&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & Y          & 1.55  \\
154 > 5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
155 > 6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
156 > 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.18  \\
157   \hline
158   \end{tabular}
159   \end{center}
# Line 152 | Line 165 | line of Table~\ref{tab:victorybad}, {\em
165   cuts.  We have verified that this effect is due to the polarization of
166   the $W$ (we remove the polarization by reweighting the events and we get
167   good agreement between prediction and observation).  The kinematical
168 < requirements (lines 2 and 3) do not have a significant additional effect.
169 < Going from GEN to RECOSIM there is a significant change in observed/predicted.  
170 < We have tracked this down to the fact that tcMET underestimates the true \met
171 < by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
172 < for each 1.5\% change in \met response.}.  Finally, contamination from non $t\bar{t}$
168 > requirements (lines 2,3,4) compensate somewhat for the effect of W polarization.
169 > Going from GEN to RECOSIM, the change in observed/predicted is small.  
170 > % We have tracked this down to the fact that tcMET underestimates the true \met
171 > % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
172 > %for each 1.5\% change in \met response.}.  
173 > Finally, contamination from non $t\bar{t}$
174   events can have a significant impact on the BG prediction.  The changes between
175 < lines 5 and 6 of Table~\ref{tab:victorybad} is driven by only {\color{red} 3}
176 < Drell Yan events that pass the \met selection.
175 > lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
176 > Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
177 > is statistically not well quantified).
178  
179   An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
180   not include effects of spin correlations between the two top quarks.  
181   We have studied this effect at the generator level using Alpgen.  We find
182 < that the bias is a the few percent level.
182 > that the bias is at the few percent level.
183  
184   Based on the results of Table~\ref{tab:victorybad}, we conclude that the
185 < naive data driven background estimate based on $P_T{\ell\ell)}$ needs to
186 < be corrected by a factor of {\color{red} $1.4 \pm 0.3$  (We need to
187 < decide what this number should be)}.  The quoted
185 > naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
186 > be corrected by a factor of {\color{red} $ K_{\rm{fudge}} =1.2 \pm 0.3$
187 > (We still need to settle on thie exact value of this.
188 > For the 11 pb analysis it is taken as =1.)} . The quoted
189   uncertainty is based on the stability of the Monte Carlo tests under
190   variations of event selections, choices of \met algorithm, etc.
191 + For example, we find that observed/predicted changes by roughly 0.1
192 + for each 1.5\% change in the average \met response.  
193 +
194  
195  
196   \subsection{Signal Contamination}
197   \label{sec:sigcont}
198  
199 < All data-driven methods are principle subject to signal contaminations
199 > All data-driven methods are in principle subject to signal contaminations
200   in the control regions, and the methods described in
201   Sections~\ref{sec:abcd} and~\ref{sec:victory} are not exceptions.
202   Signal contamination tends to dilute the significance of a signal
# Line 190 | Line 209 | adds redundancy because signal contamina
209   in the different control regions for the two methods.
210   For example, in the extreme case of a
211   new physics signal
212 < with $P_T(\ell \ell) = \met$, an excess of ev ents would be seen
212 > with $P_T(\ell \ell) = \met$, an excess of events would be seen
213   in the ABCD method but not in the $P_T(\ell \ell)$ method.
214  
215 +
216   The LM points are benchmarks for SUSY analyses at CMS.  The effects
217   of signal contaminations for a couple such points are summarized
218   in Table~\ref{tab:sigcontABCD} and~\ref{tab:sigcontPT}.
# Line 209 | Line 229 | LM1.  Results
229   are normalized to 30 pb$^{-1}$.}
230   \begin{tabular}{|c||c|c||c|c|}
231   \hline
232 < SM         & LM0         & BG Prediction & LM1          & BG Prediction \\
232 > SM         & SM$+$LM0    & BG Prediction & SM$+$LM1     & BG Prediction \\
233   Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
234 < x          & x           & x             & x            & x \\
234 > 1.2        & 6.8         & 3.7           & 3.4          & 1.3 \\
235   \hline
236   \end{tabular}
237   \end{center}
# Line 222 | Line 242 | x          & x           & x
242   \caption{\label{tab:sigcontPT} Effects of signal contamination
243   for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
244   LM1.  Results
245 < are normalized to 30 pb$^{-1}$.}
245 > are normalized to 30 pb$^{-1}$.}
246   \begin{tabular}{|c||c|c||c|c|}
247   \hline
248 < SM         & LM0         & BG Prediction & LM1          & BG Prediction \\
248 > SM         & SM$+$LM0    & BG Prediction & SM$+$LM1     & BG Prediction \\
249   Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
250 < x          & x           & x             & x            & x \\
250 > 1.2        & 6.8         & 2.2           & 3.4          & 1.5 \\
251   \hline
252   \end{tabular}
253   \end{center}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines