ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.2 by claudioc, Fri Oct 29 02:29:40 2010 UTC vs.
Revision 1.6 by claudioc, Wed Nov 3 23:05:16 2010 UTC

# Line 12 | Line 12 | nearly the same as the $P_T$ of the pair
12   from $W$-decays, which is reconstructed as \met in the
13   detector.
14  
15 < in 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
15 > In 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
16   the signal region.  The expectations from the LMO
17 < and LM1 SUSY benchmark points are {\color{red} XX} and
18 < {\color{red} XX} events respectively.
17 > and LM1 SUSY benchmark points are 5.6 and
18 > 2.2 events respectively.
19 > %{\color{red} I took these
20 > %numbers from the twiki, rescaling from 11.06 to 30/pb.
21 > %They seem too large...are they really right?}
22  
23  
24   \subsection{ABCD method}
# Line 38 | Line 41 | MET$/\sqrt{\rm SumJetPt}$.}
41  
42   \begin{figure}[bt]
43   \begin{center}
44 < \includegraphics[width=0.75\linewidth]{abcdMC.jpg}
44 > \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
45   \caption{\label{fig:abcdMC}\protect Distributions of SumJetPt
46   vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo.  Here we also
47 < show our choice of ABCD regions. {\color{red} We need a better
45 < picture with the letters A-B-C-D and with the numerical values
46 < of the boundaries clearly indicated.}}
47 > show our choice of ABCD regions.}
48   \end{center}
49   \end{figure}
50  
# Line 53 | Line 54 | The signal region is region D.  The expe
54   in the four regions for the SM Monte Carlo, as well as the BG
55   prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
56   luminosity of 30 pb$^{-1}$.  The ABCD method is accurate
57 < to about 10\%.
57 > to about 10\%. {\color{red} Avi wants some statement about stability
58 > wrt changes in regions.  I am not sure that we have done it and
59 > I am not sure it is necessary (Claudio).}
60  
61   \begin{table}[htb]
62   \begin{center}
# Line 62 | Line 65 | to about 10\%.
65   \begin{tabular}{|l|c|c|c|c||c|}
66   \hline
67   Sample   & A   & B    & C   & D   & AC/D \\ \hline
68 < ttdil    & 6.4 & 28.4 & 4.2 & 1.0 & 0.9  \\
69 < Zjets    & 0.0 & 1.3  & 0.2 & 0.0 & 0.0  \\
70 < Other SM & 0.6 & 2.1  & 0.2 & 0.1 & 0.0  \\ \hline
71 < total MC & 7.0 & 31.8 & 4.5 & 1.1 & 1.0 \\ \hline
68 > ttdil    & 6.9 & 28.6 & 4.2 & 1.0 & 1.0  \\
69 > Zjets    & 0.0 & 1.3  & 0.1 & 0.1 & 0.0  \\
70 > Other SM & 0.5 & 2.0  & 0.1 & 0.1 & 0.0  \\ \hline
71 > total MC & 7.4 & 31.9 & 4.4 & 1.2 & 1.0 \\ \hline
72   \end{tabular}
73   \end{center}
74   \end{table}
# Line 131 | Line 134 | The results are summarized in Table~\ref
134   \begin{center}
135   \caption{\label{tab:victorybad} Test of the data driven method in Monte Carlo
136   under different assumptions.  See text for details.}
137 < \begin{tabular}{|l|c|c|c|c|c|c|c|}
137 > \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
138   \hline
139 < & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & \met $>$ 50& obs/pred \\
140 < & included                 & included  & included & RECOSIM & and $\eta$ cuts &      &     \\ \hline
141 < 1&Y                        &     N     &   N      &  GEN    &   N             &   N  &       \\
142 < 2&Y                        &     N     &   N      &  GEN    &   Y             &   N  &   \\
143 < 3&Y                        &     N     &   N      &  GEN    &   Y             &   Y  &   \\
144 < 4&Y                        &     N     &   N      & RECOSIM &   Y             &   Y  &   \\
145 < 5&Y                        &     Y     &   N      & RECOSIM &   Y             &   Y  &   \\
146 < 6&Y                        &     Y     &   Y      & RECOSIM &   Y             &   Y  &   \\
139 > & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & Z veto & \met $>$ 50& obs/pred \\
140 > & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &  \\ \hline
141 > 1&Y                        &     N          &   N      &  GEN    &   N             &   N    & N          & 1.90  \\
142 > 2&Y                        &     N          &   N      &  GEN    &   Y             &   N    & N          & 1.64  \\
143 > 3&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & N          & 1.59  \\
144 > 4&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & Y          & 1.55  \\
145 > 5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
146 > 6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
147 > 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.18  \\
148   \hline
149   \end{tabular}
150   \end{center}
# Line 152 | Line 156 | line of Table~\ref{tab:victorybad}, {\em
156   cuts.  We have verified that this effect is due to the polarization of
157   the $W$ (we remove the polarization by reweighting the events and we get
158   good agreement between prediction and observation).  The kinematical
159 < requirements (lines 2 and 3) do not have a significant additional effect.
160 < Going from GEN to RECOSIM there is a significant change in observed/predicted.  
161 < We have tracked this down to the fact that tcMET underestimates the true \met
162 < by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
163 < for each 1.5\% change in \met response.}.  Finally, contamination from non $t\bar{t}$
159 > requirements (lines 2,3,4) compensate somewhat for the effect of W polarization.
160 > Going from GEN to RECOSIM, the change in observed/predicted is small.  
161 > % We have tracked this down to the fact that tcMET underestimates the true \met
162 > % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
163 > %for each 1.5\% change in \met response.}.  
164 > Finally, contamination from non $t\bar{t}$
165   events can have a significant impact on the BG prediction.  The changes between
166 < lines 5 and 6 of Table~\ref{tab:victorybad} is driven by only {\color{red} 3}
167 < Drell Yan events that pass the \met selection.
166 > lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
167 > Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
168 > is statistically not well quantified).
169  
170   An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
171   not include effects of spin correlations between the two top quarks.  
# Line 167 | Line 173 | We have studied this effect at the gener
173   that the bias is a the few percent level.
174  
175   Based on the results of Table~\ref{tab:victorybad}, we conclude that the
176 < naive data driven background estimate based on $P_T{\ell\ell)}$ needs to
177 < be corrected by a factor of {\color{red} $1.4 \pm 0.3$  (We need to
178 < decide what this number should be)}.  The quoted
176 > naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
177 > be corrected by a factor of {\color{red} $1.2 \pm 0.3$ (We need to talk
178 > about this)} . The quoted
179   uncertainty is based on the stability of the Monte Carlo tests under
180   variations of event selections, choices of \met algorithm, etc.
181  
182  
183 +
184   \subsection{Signal Contamination}
185   \label{sec:sigcont}
186  
187 < All data-driven methods are principle subject to signal contaminations
187 > All data-driven methods are in principle subject to signal contaminations
188   in the control regions, and the methods described in
189   Sections~\ref{sec:abcd} and~\ref{sec:victory} are not exceptions.
190   Signal contamination tends to dilute the significance of a signal
# Line 190 | Line 197 | adds redundancy because signal contamina
197   in the different control regions for the two methods.
198   For example, in the extreme case of a
199   new physics signal
200 < with $P_T(\ell \ell) = \met$, an excess of ev ents would be seen
200 > with $P_T(\ell \ell) = \met$, an excess of events would be seen
201   in the ABCD method but not in the $P_T(\ell \ell)$ method.
202  
203 +
204   The LM points are benchmarks for SUSY analyses at CMS.  The effects
205   of signal contaminations for a couple such points are summarized
206   in Table~\ref{tab:sigcontABCD} and~\ref{tab:sigcontPT}.
# Line 211 | Line 219 | are normalized to 30 pb$^{-1}$.}
219   \hline
220   SM         & LM0         & BG Prediction & LM1          & BG Prediction \\
221   Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
222 < x          & x           & x             & x            & x \\
222 > 1.2        & 5.6         & 3.7           & 2.2          & 1.3 \\
223   \hline
224   \end{tabular}
225   \end{center}
# Line 222 | Line 230 | x          & x           & x
230   \caption{\label{tab:sigcontPT} Effects of signal contamination
231   for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
232   LM1.  Results
233 < are normalized to 30 pb$^{-1}$.}
233 > are normalized to 30 pb$^{-1}$. {\color{red} Does this BG prediction include
234 > the fudge factor of 1.4 or watever because the method is not perfect.}}
235   \begin{tabular}{|c||c|c||c|c|}
236   \hline
237   SM         & LM0         & BG Prediction & LM1          & BG Prediction \\
238   Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
239 < x          & x           & x             & x            & x \\
239 > 1.2        & 5.6         & 2.2           & 2.2          & 1.5 \\
240   \hline
241   \end{tabular}
242   \end{center}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines