ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.12 by benhoob, Thu Nov 11 11:20:00 2010 UTC vs.
Revision 1.19 by benhoob, Sat Nov 13 06:42:40 2010 UTC

# Line 12 | Line 12 | nearly the same as the $P_T$ of the pair
12   from $W$-decays, which is reconstructed as \met in the
13   detector.
14  
15 < In 35 pb$^{-1}$ we expect 1.4 SM event in
16 < the signal region.  The expectations from the LMO
17 < and LM1 SUSY benchmark points are 6.5 and
18 < 2.6 events respectively.
15 >
16   %{\color{red} I took these
17   %numbers from the twiki, rescaling from 11.06 to 30/pb.
18   %They seem too large...are they really right?}
# Line 25 | Line 22 | and LM1 SUSY benchmark points are 6.5 an
22   \label{sec:abcd}
23  
24   We find that in $t\bar{t}$ events \met and
25 < \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated.
26 < This is demonstrated in Figure~\ref{fig:uncor}.
25 > \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 > as demonstrated in Figure~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
# Line 62 | Line 59 | to about 20\%.
59   \begin{table}[htb]
60   \begin{center}
61   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
62 < 30 pb$^{-1}$ in the ABCD regions.}
63 < \begin{tabular}{|l|c|c|c|c||c|}
62 > 35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
63 > the signal region given by A $\times$ C / B. Here `SM other' is the sum
64 > of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
65 > $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
66 > \begin{tabular}{lccccc}
67 > \hline
68 >         sample                          &              A   &              B   &              C   &              D   &    A $\times$ C / B \\
69 > \hline
70 >
71 >
72 > \hline
73 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
74 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &           0.03   &           1.47   &           0.10   &           0.10   &           0.00  \\
75 >       SM other                          &           0.65   &           2.31   &           0.17   &           0.14   &           0.05  \\
76 > \hline
77 >    total SM MC                          &           8.63   &          36.85   &           5.07   &           1.43   &           1.19  \\
78   \hline
68 Sample   & A   & B    & C   & D   & AC/D \\ \hline
69 ttdil    & 6.9 & 28.6 & 4.2 & 1.0 & 1.0  \\
70 Zjets    & 0.0 & 1.3  & 0.1 & 0.1 & 0.0  \\
71 Other SM & 0.5 & 2.0  & 0.1 & 0.1 & 0.0  \\ \hline
72 total MC & 7.4 & 31.9 & 4.4 & 1.2 & 1.0 \\ \hline
79   \end{tabular}
80   \end{center}
81   \end{table}
# Line 90 | Line 96 | In practice one has to rescale the resul
96   to account for the fact that any dilepton selection must include a
97   moderate \met cut in order to reduce Drell Yan backgrounds.  This
98   is discussed in Section 5.3 of Reference~\cite{ref:ourvictory}; for a \met
99 < cut of 50 GeV, the rescaling factor is obtained from the data as
99 > cut of 50 GeV, the rescaling factor is obtained from the MC as
100  
101   \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
102   \begin{center}
# Line 122 | Line 128 | leptons that have no simple correspondan
128   \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
129   neutrinos which is only partially compensated by the $K$ factor above.
130   \item The \met resolution is much worse than the dilepton $P_T$ resolution.
131 < When convoluted with a falling spectrum in the tails of \met, this result
131 > When convoluted with a falling spectrum in the tails of \met, this results
132   in a harder spectrum for \met than the original $P_T(\nu\nu)$.
133   \item The \met response in CMS is not exactly 1.  This causes a distortion
134   in the \met distribution that is not present in the $P_T(\ell\ell)$ distribution.
# Line 133 | Line 139 | of $P_T(\ell\ell)$ and $P_T(\nu\nu)$ do
139   sources.  These events can affect the background prediction.  Particularly
140   dangerous are high $P_T$ Drell Yan events that barely pass the \met$>$ 50
141   GeV selection.  They will tend to push the data-driven background prediction up.
142 + Therefore we estimate the number of DY events entering the background prediction
143 + using the $R_{out/in}$ method as described in Sec.~\ref{sec:othBG}.
144   \end{itemize}
145  
146   We have studied these effects in SM Monte Carlo, using a mixture of generator and
# Line 155 | Line 163 | under different assumptions.  See text f
163   4&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & Y          & 1.55  \\
164   5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
165   6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
166 < 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.18  \\
166 > 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.38  \\
167 > %%%NOTE: updated value 1.18 -> 1.46 since 2/3 DY events have been removed by updated analysis selections,
168 > %%%dpt/pt cut and general lepton veto
169   \hline
170   \end{tabular}
171   \end{center}
# Line 173 | Line 183 | Going from GEN to RECOSIM, the change in
183   % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
184   %for each 1.5\% change in \met response.}.  
185   Finally, contamination from non $t\bar{t}$
186 < events can have a significant impact on the BG prediction.  The changes between
187 < lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
188 < Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
189 < is statistically not well quantified).
186 > events can have a significant impact on the BG prediction.  
187 > %The changes between
188 > %lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
189 > %Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
190 > %is statistically not well quantified).
191  
192   An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
193   not include effects of spin correlations between the two top quarks.  
# Line 200 | Line 211 | be corrected by a factor of $ K_C = X \p
211   The value of this correction factor as well as the systematic uncertainty
212   will be assessed using 38X ttbar madgraph MC. In the following we use
213   $K_C = 1$ for simplicity. Based on previous MC studies we foresee a correction
214 < factor of $K_C \approx 1.2 - 1.4$, and we will assess an uncertainty
214 > factor of $K_C \approx 1.2 - 1.5$, and we will assess an uncertainty
215   based on the stability of the Monte Carlo tests under
216   variations of event selections, choices of \met algorithm, etc.
217   For example, we find that observed/predicted changes by roughly 0.1
# Line 230 | Line 241 | in the ABCD method but not in the $P_T(\
241  
242   The LM points are benchmarks for SUSY analyses at CMS.  The effects
243   of signal contaminations for a couple such points are summarized
244 < in Table~\ref{tab:sigcontABCD} and~\ref{tab:sigcontPT}.
234 < Signal contamination is definitely an important
244 > in Table~\ref{tab:sigcont}. Signal contamination is definitely an important
245   effect for these two LM points, but it does not totally hide the
246   presence of the signal.
247  
248  
249   \begin{table}[htb]
250   \begin{center}
251 < \caption{\label{tab:sigcontABCD} Effects of signal contamination
252 < for the background predictions of the ABCD method including LM0 or
253 < LM1.  Results
254 < are normalized to 30 pb$^{-1}$.}
255 < \begin{tabular}{|c|c||c|c||c|c|}
256 < \hline
247 < SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
248 < Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
249 < 1.2        & 1.0            & 6.8          & 3.7           & 3.4          & 1.3 \\
251 > \caption{\label{tab:sigcont} Effects of signal contamination
252 > for the two data-driven background estimates. The three columns give
253 > the expected yield in the signal region and the background estimates
254 > using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.
255 > {\color{red} \bf UPDATE RESULTS WITH DY SAMPLES.}}
256 > \begin{tabular}{lccc}
257   \hline
258 < \end{tabular}
252 < \end{center}
253 < \end{table}
254 <
255 < \begin{table}[htb]
256 < \begin{center}
257 < \caption{\label{tab:sigcontPT} Effects of signal contamination
258 < for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
259 < LM1.  Results
260 < are normalized to 30 pb$^{-1}$.}
261 < \begin{tabular}{|c|c||c|c||c|c|}
258 >            &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
259   \hline
260 < SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
261 < Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
262 < 1.2        & 1.0            & 6.8          & 2.2           & 3.4          & 1.5 \\
260 > SM only     &      1.43       &      1.19    &             1.03  \\
261 > SM + LM0    &      7.90       &      4.23    &             2.35  \\
262 > SM + LM1    &      4.00       &      1.53    &             1.51  \\
263   \hline
264   \end{tabular}
265   \end{center}
266   \end{table}
267  
268 +
269 +
270 + %\begin{table}[htb]
271 + %\begin{center}
272 + %\caption{\label{tab:sigcontABCD} Effects of signal contamination
273 + %for the background predictions of the ABCD method including LM0 or
274 + %LM1.  Results
275 + %are normalized to 30 pb$^{-1}$.}
276 + %\begin{tabular}{|c|c||c|c||c|c|}
277 + %\hline
278 + %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
279 + %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
280 + %1.2        & 1.0            & 6.8          & 3.7           & 3.4          & 1.3 \\
281 + %\hline
282 + %\end{tabular}
283 + %\end{center}
284 + %\end{table}
285 +
286 + %\begin{table}[htb]
287 + %\begin{center}
288 + %\caption{\label{tab:sigcontPT} Effects of signal contamination
289 + %for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
290 + %LM1.  Results
291 + %are normalized to 30 pb$^{-1}$.}
292 + %\begin{tabular}{|c|c||c|c||c|c|}
293 + %\hline
294 + %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
295 + %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
296 + %1.2        & 1.0            & 6.8          & 2.2           & 3.4          & 1.5 \\
297 + %\hline
298 + %\end{tabular}
299 + %\end{center}
300 + %\end{table}
301 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines