ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.2 by claudioc, Fri Oct 29 02:29:40 2010 UTC vs.
Revision 1.11 by benhoob, Mon Nov 8 13:10:55 2010 UTC

# Line 2 | Line 2
2   \label{sec:datadriven}
3   We have developed two data-driven methods to
4   estimate the background in the signal region.
5 < The first one explouts the fact that
5 > The first one exploits the fact that
6   \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
7   uncorrelated for the $t\bar{t}$ background
8   (Section~\ref{sec:abcd});  the second one
# Line 12 | Line 12 | nearly the same as the $P_T$ of the pair
12   from $W$-decays, which is reconstructed as \met in the
13   detector.
14  
15 < in 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
15 > In 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
16   the signal region.  The expectations from the LMO
17 < and LM1 SUSY benchmark points are {\color{red} XX} and
18 < {\color{red} XX} events respectively.
17 > and LM1 SUSY benchmark points are 5.6 and
18 > 2.2 events respectively.
19 > %{\color{red} I took these
20 > %numbers from the twiki, rescaling from 11.06 to 30/pb.
21 > %They seem too large...are they really right?}
22  
23  
24   \subsection{ABCD method}
# Line 38 | Line 41 | MET$/\sqrt{\rm SumJetPt}$.}
41  
42   \begin{figure}[bt]
43   \begin{center}
44 < \includegraphics[width=0.75\linewidth]{abcdMC.jpg}
44 > \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
45   \caption{\label{fig:abcdMC}\protect Distributions of SumJetPt
46   vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo.  Here we also
47 < show our choice of ABCD regions. {\color{red} We need a better
45 < picture with the letters A-B-C-D and with the numerical values
46 < of the boundaries clearly indicated.}}
47 > show our choice of ABCD regions.}
48   \end{center}
49   \end{figure}
50  
# Line 53 | Line 54 | The signal region is region D.  The expe
54   in the four regions for the SM Monte Carlo, as well as the BG
55   prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
56   luminosity of 30 pb$^{-1}$.  The ABCD method is accurate
57 < to about 10\%.
57 > to about 10\%.
58 > %{\color{red} Avi wants some statement about stability
59 > %wrt changes in regions.  I am not sure that we have done it and
60 > %I am not sure it is necessary (Claudio).}
61  
62   \begin{table}[htb]
63   \begin{center}
# Line 62 | Line 66 | to about 10\%.
66   \begin{tabular}{|l|c|c|c|c||c|}
67   \hline
68   Sample   & A   & B    & C   & D   & AC/D \\ \hline
69 < ttdil    & 6.4 & 28.4 & 4.2 & 1.0 & 0.9  \\
70 < Zjets    & 0.0 & 1.3  & 0.2 & 0.0 & 0.0  \\
71 < Other SM & 0.6 & 2.1  & 0.2 & 0.1 & 0.0  \\ \hline
72 < total MC & 7.0 & 31.8 & 4.5 & 1.1 & 1.0 \\ \hline
69 > ttdil    & 6.9 & 28.6 & 4.2 & 1.0 & 1.0  \\
70 > Zjets    & 0.0 & 1.3  & 0.1 & 0.1 & 0.0  \\
71 > Other SM & 0.5 & 2.0  & 0.1 & 0.1 & 0.0  \\ \hline
72 > total MC & 7.4 & 31.9 & 4.4 & 1.2 & 1.0 \\ \hline
73   \end{tabular}
74   \end{center}
75   \end{table}
# Line 95 | Line 99 | $ K = \frac{\int_0^{\infty} {\cal N}(\pt
99  
100  
101   Monte Carlo studies give values of $K$ that are typically between 1.5 and 1.6,
102 < depending on selection details.
102 > depending on selection details.  
103 > %%%TO BE REPLACED
104 > %Given the integrated luminosity of the
105 > %present dataset, the determination of $K$ in data is severely statistics
106 > %limited.  Thus, we take $K$ from $t\bar{t}$ Monte Carlo as
107 >
108 > %\begin{center}
109 > %$ K_{MC} = \frac{\int_0^{\infty} {\cal N}(\met)~~d\met~}{\int_{50}^{\infty} {\cal N}(\met)~~d\met~}$
110 > %\end{center}
111 >
112 > %\noindent {\color{red} For the 11 pb result we have used $K$ from data.}
113  
114   There are several effects that spoil the correspondance between \met and
115   $P_T(\ell\ell)$:
# Line 131 | Line 145 | The results are summarized in Table~\ref
145   \begin{center}
146   \caption{\label{tab:victorybad} Test of the data driven method in Monte Carlo
147   under different assumptions.  See text for details.}
148 < \begin{tabular}{|l|c|c|c|c|c|c|c|}
148 > \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
149   \hline
150 < & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & \met $>$ 50& obs/pred \\
151 < & included                 & included  & included & RECOSIM & and $\eta$ cuts &      &     \\ \hline
152 < 1&Y                        &     N     &   N      &  GEN    &   N             &   N  &       \\
153 < 2&Y                        &     N     &   N      &  GEN    &   Y             &   N  &   \\
154 < 3&Y                        &     N     &   N      &  GEN    &   Y             &   Y  &   \\
155 < 4&Y                        &     N     &   N      & RECOSIM &   Y             &   Y  &   \\
156 < 5&Y                        &     Y     &   N      & RECOSIM &   Y             &   Y  &   \\
157 < 6&Y                        &     Y     &   Y      & RECOSIM &   Y             &   Y  &   \\
150 > & True $t\bar{t}$ dilepton & $t\to W\to\tau$& other SM & GEN or  & Lepton $P_T$    & Z veto & \met $>$ 50& obs/pred \\
151 > & included                 & included       & included & RECOSIM & and $\eta$ cuts &        &            &  \\ \hline
152 > 1&Y                        &     N          &   N      &  GEN    &   N             &   N    & N          & 1.90  \\
153 > 2&Y                        &     N          &   N      &  GEN    &   Y             &   N    & N          & 1.64  \\
154 > 3&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & N          & 1.59  \\
155 > 4&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & Y          & 1.55  \\
156 > 5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
157 > 6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
158 > 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.18  \\
159   \hline
160   \end{tabular}
161   \end{center}
# Line 152 | Line 167 | line of Table~\ref{tab:victorybad}, {\em
167   cuts.  We have verified that this effect is due to the polarization of
168   the $W$ (we remove the polarization by reweighting the events and we get
169   good agreement between prediction and observation).  The kinematical
170 < requirements (lines 2 and 3) do not have a significant additional effect.
171 < Going from GEN to RECOSIM there is a significant change in observed/predicted.  
172 < We have tracked this down to the fact that tcMET underestimates the true \met
173 < by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
174 < for each 1.5\% change in \met response.}.  Finally, contamination from non $t\bar{t}$
170 > requirements (lines 2,3,4) compensate somewhat for the effect of W polarization.
171 > Going from GEN to RECOSIM, the change in observed/predicted is small.  
172 > % We have tracked this down to the fact that tcMET underestimates the true \met
173 > % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
174 > %for each 1.5\% change in \met response.}.  
175 > Finally, contamination from non $t\bar{t}$
176   events can have a significant impact on the BG prediction.  The changes between
177 < lines 5 and 6 of Table~\ref{tab:victorybad} is driven by only {\color{red} 3}
178 < Drell Yan events that pass the \met selection.
177 > lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
178 > Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
179 > is statistically not well quantified).
180  
181   An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
182   not include effects of spin correlations between the two top quarks.  
183   We have studied this effect at the generator level using Alpgen.  We find
184 < that the bias is a the few percent level.
184 > that the bias is at the few percent level.
185 >
186 > %%%TO BE REPLACED
187 > %Based on the results of Table~\ref{tab:victorybad}, we conclude that the
188 > %naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
189 > %be corrected by a factor of {\color{red} $ K_{\rm{fudge}} =1.2 \pm 0.3$
190 > %(We still need to settle on thie exact value of this.
191 > %For the 11 pb analysis it is taken as =1.)} . The quoted
192 > %uncertainty is based on the stability of the Monte Carlo tests under
193 > %variations of event selections, choices of \met algorithm, etc.
194 > %For example, we find that observed/predicted changes by roughly 0.1
195 > %for each 1.5\% change in the average \met response.  
196  
197   Based on the results of Table~\ref{tab:victorybad}, we conclude that the
198 < naive data driven background estimate based on $P_T{\ell\ell)}$ needs to
199 < be corrected by a factor of {\color{red} $1.4 \pm 0.3$  (We need to
200 < decide what this number should be)}.  The quoted
201 < uncertainty is based on the stability of the Monte Carlo tests under
198 > naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
199 > be corrected by a factor of $ K_C = X \pm Y$.
200 > The value of this correction factor as well as the systematic uncertainty
201 > will be assessed using 38X ttbar madgraph MC. In the following we use
202 > $K_C = 1$ for simplicity. Based on previous MC studies we foresee a correction
203 > factor of $K_C \approx 1.2 - 1.4$, and we will assess an uncertainty
204 > based on the stability of the Monte Carlo tests under
205   variations of event selections, choices of \met algorithm, etc.
206 + For example, we find that observed/predicted changes by roughly 0.1
207 + for each 1.5\% change in the average \met response.
208 +
209  
210  
211   \subsection{Signal Contamination}
212   \label{sec:sigcont}
213  
214 < All data-driven methods are principle subject to signal contaminations
214 > All data-driven methods are in principle subject to signal contaminations
215   in the control regions, and the methods described in
216   Sections~\ref{sec:abcd} and~\ref{sec:victory} are not exceptions.
217   Signal contamination tends to dilute the significance of a signal
# Line 190 | Line 224 | adds redundancy because signal contamina
224   in the different control regions for the two methods.
225   For example, in the extreme case of a
226   new physics signal
227 < with $P_T(\ell \ell) = \met$, an excess of ev ents would be seen
227 > with $P_T(\ell \ell) = \met$, an excess of events would be seen
228   in the ABCD method but not in the $P_T(\ell \ell)$ method.
229  
230 +
231   The LM points are benchmarks for SUSY analyses at CMS.  The effects
232   of signal contaminations for a couple such points are summarized
233   in Table~\ref{tab:sigcontABCD} and~\ref{tab:sigcontPT}.
# Line 207 | Line 242 | presence of the signal.
242   for the background predictions of the ABCD method including LM0 or
243   LM1.  Results
244   are normalized to 30 pb$^{-1}$.}
245 < \begin{tabular}{|c||c|c||c|c|}
245 > \begin{tabular}{|c|c||c|c||c|c|}
246   \hline
247 < SM         & LM0         & BG Prediction & LM1          & BG Prediction \\
248 < Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
249 < x          & x           & x             & x            & x \\
247 > SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
248 > Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
249 > 1.2        & 1.0            & 6.8          & 3.7           & 3.4          & 1.3 \\
250   \hline
251   \end{tabular}
252   \end{center}
# Line 222 | Line 257 | x          & x           & x
257   \caption{\label{tab:sigcontPT} Effects of signal contamination
258   for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
259   LM1.  Results
260 < are normalized to 30 pb$^{-1}$.}
261 < \begin{tabular}{|c||c|c||c|c|}
260 > are normalized to 30 pb$^{-1}$.}
261 > \begin{tabular}{|c|c||c|c||c|c|}
262   \hline
263 < SM         & LM0         & BG Prediction & LM1          & BG Prediction \\
264 < Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
265 < x          & x           & x             & x            & x \\
263 > SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
264 > Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
265 > 1.2        & 1.0            & 6.8          & 2.2           & 3.4          & 1.5 \\
266   \hline
267   \end{tabular}
268   \end{center}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines