ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.10 by benhoob, Mon Nov 8 11:06:03 2010 UTC vs.
Revision 1.15 by benhoob, Thu Nov 11 16:36:56 2010 UTC

# Line 12 | Line 12 | nearly the same as the $P_T$ of the pair
12   from $W$-decays, which is reconstructed as \met in the
13   detector.
14  
15 < In 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
16 < the signal region.  The expectations from the LMO
17 < and LM1 SUSY benchmark points are 5.6 and
18 < 2.2 events respectively.
15 >
16   %{\color{red} I took these
17   %numbers from the twiki, rescaling from 11.06 to 30/pb.
18   %They seem too large...are they really right?}
# Line 53 | Line 50 | Our choice of ABCD regions is shown in F
50   The signal region is region D.  The expected number of events
51   in the four regions for the SM Monte Carlo, as well as the BG
52   prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
53 < luminosity of 30 pb$^{-1}$.  The ABCD method is accurate
54 < to about 10\%.
53 > luminosity of 35 pb$^{-1}$.  The ABCD method is accurate
54 > to about 20\%.
55   %{\color{red} Avi wants some statement about stability
56   %wrt changes in regions.  I am not sure that we have done it and
57   %I am not sure it is necessary (Claudio).}
# Line 62 | Line 59 | to about 10\%.
59   \begin{table}[htb]
60   \begin{center}
61   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
62 < 30 pb$^{-1}$ in the ABCD regions.}
63 < \begin{tabular}{|l|c|c|c|c||c|}
62 > 35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
63 > the signal region given by A$\times$C/B. Here 'SM other' is the sum
64 > of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
65 > $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
66 > \begin{tabular}{l||c|c|c|c||c}
67 > \hline
68 >         sample                          &              A   &              B   &              C   &              D   &    A$\times$C/B \\
69 > \hline
70 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
71 >   $Z^0$ + jets                          &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
72 >       SM other                          &           0.65   &           2.31   &           0.17   &           0.14   &           0.05  \\
73 > \hline
74 >    total SM MC                          &           8.61   &          36.54   &           5.05   &           1.41   &           1.19  \\
75   \hline
68 Sample   & A   & B    & C   & D   & AC/D \\ \hline
69 ttdil    & 6.9 & 28.6 & 4.2 & 1.0 & 1.0  \\
70 Zjets    & 0.0 & 1.3  & 0.1 & 0.1 & 0.0  \\
71 Other SM & 0.5 & 2.0  & 0.1 & 0.1 & 0.0  \\ \hline
72 total MC & 7.4 & 31.9 & 4.4 & 1.2 & 1.0 \\ \hline
76   \end{tabular}
77   \end{center}
78   \end{table}
# Line 196 | Line 199 | that the bias is at the few percent leve
199  
200   Based on the results of Table~\ref{tab:victorybad}, we conclude that the
201   naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
202 < be corrected by a factor of $ K = X \pm Y$.
202 > be corrected by a factor of $ K_C = X \pm Y$.
203   The value of this correction factor as well as the systematic uncertainty
204   will be assessed using 38X ttbar madgraph MC. In the following we use
205 < $K = 1$ for simplicity. Based on previous MC studies we foresee a correction
206 < factor of $\approx 1.2 - 1.4$, and we will assess an uncertainty
205 > $K_C = 1$ for simplicity. Based on previous MC studies we foresee a correction
206 > factor of $K_C \approx 1.2 - 1.5$, and we will assess an uncertainty
207   based on the stability of the Monte Carlo tests under
208   variations of event selections, choices of \met algorithm, etc.
209   For example, we find that observed/predicted changes by roughly 0.1
# Line 230 | Line 233 | in the ABCD method but not in the $P_T(\
233  
234   The LM points are benchmarks for SUSY analyses at CMS.  The effects
235   of signal contaminations for a couple such points are summarized
236 < in Table~\ref{tab:sigcontABCD} and~\ref{tab:sigcontPT}.
234 < Signal contamination is definitely an important
236 > in Table~\ref{tab:sigcont}. Signal contamination is definitely an important
237   effect for these two LM points, but it does not totally hide the
238   presence of the signal.
239  
240  
241   \begin{table}[htb]
242   \begin{center}
243 < \caption{\label{tab:sigcontABCD} Effects of signal contamination
244 < for the background predictions of the ABCD method including LM0 or
245 < LM1.  Results
246 < are normalized to 30 pb$^{-1}$.}
247 < \begin{tabular}{|c|c||c|c||c|c|}
243 > \caption{\label{tab:sigcont} Effects of signal contamination
244 > for the two data-driven background estimates. The three columns give
245 > the expected yield in the signal region and the background estimates
246 > using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.}
247 > \begin{tabular}{lccc}
248   \hline
249 < SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
248 < Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
249 < 1.2        & 1.0            & 6.8          & 3.7           & 3.4          & 1.3 \\
249 >            &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
250   \hline
251 < \end{tabular}
252 < \end{center}
253 < \end{table}
254 <
255 < \begin{table}[htb]
256 < \begin{center}
257 < \caption{\label{tab:sigcontPT} Effects of signal contamination
258 < for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
259 < LM1.  Results
260 < are normalized to 30 pb$^{-1}$.}
261 < \begin{tabular}{|c|c||c|c||c|c|}
262 < \hline
263 < SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
264 < Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
265 < 1.2        & 1.0            & 6.8          & 2.2           & 3.4          & 1.5 \\
251 > SM only     &      1.41       &      1.19    &             0.96  \\
252 > SM + LM0    &      7.88       &      4.24    &             2.28  \\
253 > SM + LM1    &      3.98       &      1.53    &             1.44  \\
254   \hline
255   \end{tabular}
256   \end{center}
257   \end{table}
258  
259 +
260 +
261 + %\begin{table}[htb]
262 + %\begin{center}
263 + %\caption{\label{tab:sigcontABCD} Effects of signal contamination
264 + %for the background predictions of the ABCD method including LM0 or
265 + %LM1.  Results
266 + %are normalized to 30 pb$^{-1}$.}
267 + %\begin{tabular}{|c|c||c|c||c|c|}
268 + %\hline
269 + %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
270 + %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
271 + %1.2        & 1.0            & 6.8          & 3.7           & 3.4          & 1.3 \\
272 + %\hline
273 + %\end{tabular}
274 + %\end{center}
275 + %\end{table}
276 +
277 + %\begin{table}[htb]
278 + %\begin{center}
279 + %\caption{\label{tab:sigcontPT} Effects of signal contamination
280 + %for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
281 + %LM1.  Results
282 + %are normalized to 30 pb$^{-1}$.}
283 + %\begin{tabular}{|c|c||c|c||c|c|}
284 + %\hline
285 + %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
286 + %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
287 + %1.2        & 1.0            & 6.8          & 2.2           & 3.4          & 1.5 \\
288 + %\hline
289 + %\end{tabular}
290 + %\end{center}
291 + %\end{table}
292 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines