ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.15 by benhoob, Thu Nov 11 16:36:56 2010 UTC vs.
Revision 1.23 by benhoob, Mon Nov 15 10:11:17 2010 UTC

# Line 3 | Line 3
3   We have developed two data-driven methods to
4   estimate the background in the signal region.
5   The first one exploits the fact that
6 < \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
6 > SumJetPt and \met$/\sqrt{\rm SumJetPt}$ are nearly
7   uncorrelated for the $t\bar{t}$ background
8   (Section~\ref{sec:abcd});  the second one
9   is based on the fact that in $t\bar{t}$ the
# Line 21 | Line 21 | detector.
21   \subsection{ABCD method}
22   \label{sec:abcd}
23  
24 < We find that in $t\bar{t}$ events \met and
25 < \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated.
26 < This is demonstrated in Figure~\ref{fig:uncor}.
24 > We find that in $t\bar{t}$ events SumJetPt and
25 > \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 > as demonstrated in Figure~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
30 < \begin{figure}[tb]
30 > \begin{figure}[bht]
31   \begin{center}
32   \includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
33   \caption{\label{fig:uncor}\protect Distributions of SumJetPt
# Line 36 | Line 36 | MET$/\sqrt{\rm SumJetPt}$.}
36   \end{center}
37   \end{figure}
38  
39 < \begin{figure}[bt]
39 > \begin{figure}[tb]
40   \begin{center}
41   \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
42 < \caption{\label{fig:abcdMC}\protect Distributions of SumJetPt
43 < vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo.  Here we also
44 < show our choice of ABCD regions.}
42 > \caption{\label{fig:abcdMC}\protect Distributions of MET$/\sqrt{\rm SumJetPt}$ vs.
43 > SumJetPt for SM Monte Carlo.  Here we also show our choice of ABCD regions.}
44   \end{center}
45   \end{figure}
46  
# Line 51 | Line 50 | The signal region is region D.  The expe
50   in the four regions for the SM Monte Carlo, as well as the BG
51   prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
52   luminosity of 35 pb$^{-1}$.  The ABCD method is accurate
53 < to about 20\%.
53 > to about 20\%, and we assess a corresponding systematic uncertainty on
54 > the background prediction.
55   %{\color{red} Avi wants some statement about stability
56   %wrt changes in regions.  I am not sure that we have done it and
57   %I am not sure it is necessary (Claudio).}
58  
59 < \begin{table}[htb]
59 > \begin{table}[ht]
60   \begin{center}
61   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
62   35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
63 < the signal region given by A$\times$C/B. Here 'SM other' is the sum
63 > the signal region given by A $\times$ C / B. Here `SM other' is the sum
64   of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
65   $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
66 < \begin{tabular}{l||c|c|c|c||c}
66 > \begin{tabular}{lccccc}
67   \hline
68 <         sample                          &              A   &              B   &              C   &              D   &    A$\times$C/B \\
68 >         sample                          &              A   &              B   &              C   &              D   &    A $\times$ C / B \\
69 > \hline
70 >
71 >
72   \hline
73   $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
74 <   $Z^0$ + jets                          &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
74 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &           0.03   &           1.47   &           0.10   &           0.10   &           0.00  \\
75         SM other                          &           0.65   &           2.31   &           0.17   &           0.14   &           0.05  \\
76   \hline
77 <    total SM MC                          &           8.61   &          36.54   &           5.05   &           1.41   &           1.19  \\
77 >    total SM MC                          &           8.63   &          36.85   &           5.07   &           1.43   &           1.19  \\
78   \hline
79   \end{tabular}
80   \end{center}
# Line 93 | Line 96 | In practice one has to rescale the resul
96   to account for the fact that any dilepton selection must include a
97   moderate \met cut in order to reduce Drell Yan backgrounds.  This
98   is discussed in Section 5.3 of Reference~\cite{ref:ourvictory}; for a \met
99 < cut of 50 GeV, the rescaling factor is obtained from the data as
99 > cut of 50 GeV, the rescaling factor is obtained from the MC as
100  
101   \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
102   \begin{center}
# Line 118 | Line 121 | There are several effects that spoil the
121   $P_T(\ell\ell)$:
122   \begin{itemize}
123   \item $Ws$ in top events are polarized.  Neutrinos are emitted preferentially
124 < forward in the $W$ rest frame, thus the $P_T(\nu\nu)$ distribution is harder
124 > parallel to the $W$ velocity while charged leptons are emitted prefertially
125 > anti-parallel. Thus the $P_T(\nu\nu)$ distribution is harder
126   than the $P_T(\ell\ell)$ distribution for top dilepton events.
127   \item The lepton selections results in $P_T$ and $\eta$ cuts on the individual
128   leptons that have no simple correspondance to the neutrino requirements.
129   \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
130   neutrinos which is only partially compensated by the $K$ factor above.
131   \item The \met resolution is much worse than the dilepton $P_T$ resolution.
132 < When convoluted with a falling spectrum in the tails of \met, this result
132 > When convoluted with a falling spectrum in the tails of \met, this results
133   in a harder spectrum for \met than the original $P_T(\nu\nu)$.
134   \item The \met response in CMS is not exactly 1.  This causes a distortion
135   in the \met distribution that is not present in the $P_T(\ell\ell)$ distribution.
# Line 136 | Line 140 | of $P_T(\ell\ell)$ and $P_T(\nu\nu)$ do
140   sources.  These events can affect the background prediction.  Particularly
141   dangerous are high $P_T$ Drell Yan events that barely pass the \met$>$ 50
142   GeV selection.  They will tend to push the data-driven background prediction up.
143 + Therefore we estimate the number of DY events entering the background prediction
144 + using the $R_{out/in}$ method as described in Sec.~\ref{sec:othBG}.
145   \end{itemize}
146  
147   We have studied these effects in SM Monte Carlo, using a mixture of generator and
# Line 158 | Line 164 | under different assumptions.  See text f
164   4&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & Y          & 1.55  \\
165   5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
166   6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
167 < 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.18  \\
167 > 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.38  \\
168 > %%%NOTE: updated value 1.18 -> 1.46 since 2/3 DY events have been removed by updated analysis selections,
169 > %%%dpt/pt cut and general lepton veto
170   \hline
171   \end{tabular}
172   \end{center}
# Line 176 | Line 184 | Going from GEN to RECOSIM, the change in
184   % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
185   %for each 1.5\% change in \met response.}.  
186   Finally, contamination from non $t\bar{t}$
187 < events can have a significant impact on the BG prediction.  The changes between
188 < lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
189 < Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
190 < is statistically not well quantified).
187 > events can have a significant impact on the BG prediction.  
188 > %The changes between
189 > %lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
190 > %Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
191 > %is statistically not well quantified).
192  
193   An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
194   not include effects of spin correlations between the two top quarks.  
# Line 248 | Line 257 | using the ABCD and $P_T(\ell \ell)$ meth
257   \hline
258              &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
259   \hline
260 < SM only     &      1.41       &      1.19    &             0.96  \\
261 < SM + LM0    &      7.88       &      4.24    &             2.28  \\
262 < SM + LM1    &      3.98       &      1.53    &             1.44  \\
260 > SM only     &      1.43       &      1.19    &             1.03  \\
261 > SM + LM0    &      7.90       &      4.23    &             2.35  \\
262 > SM + LM1    &      4.00       &      1.53    &             1.51  \\
263   \hline
264   \end{tabular}
265   \end{center}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines