ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.15 by benhoob, Thu Nov 11 16:36:56 2010 UTC vs.
Revision 1.24 by benhoob, Fri Nov 19 16:57:33 2010 UTC

# Line 3 | Line 3
3   We have developed two data-driven methods to
4   estimate the background in the signal region.
5   The first one exploits the fact that
6 < \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
6 > SumJetPt and \met$/\sqrt{\rm SumJetPt}$ are nearly
7   uncorrelated for the $t\bar{t}$ background
8   (Section~\ref{sec:abcd});  the second one
9   is based on the fact that in $t\bar{t}$ the
# Line 21 | Line 21 | detector.
21   \subsection{ABCD method}
22   \label{sec:abcd}
23  
24 < We find that in $t\bar{t}$ events \met and
25 < \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated.
26 < This is demonstrated in Figure~\ref{fig:uncor}.
24 > We find that in $t\bar{t}$ events SumJetPt and
25 > \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 > as demonstrated in Figure~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
30 < \begin{figure}[tb]
30 > %\begin{figure}[bht]
31 > %\begin{center}
32 > %\includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
33 > %\caption{\label{fig:uncor}\protect Distributions of SumJetPt
34 > %in MC $t\bar{t}$ events for different intervals of
35 > %MET$/\sqrt{\rm SumJetPt}$.}
36 > %\end{center}
37 > %\end{figure}
38 >
39 > \begin{figure}[bht]
40   \begin{center}
41 < \includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
41 > \includegraphics[width=0.75\linewidth]{uncor.png}
42   \caption{\label{fig:uncor}\protect Distributions of SumJetPt
43   in MC $t\bar{t}$ events for different intervals of
44 < MET$/\sqrt{\rm SumJetPt}$.}
44 > MET$/\sqrt{\rm SumJetPt}$. h1, h2, and h3 refer to the MET$/\sqrt{\rm SumJetPt}$
45 > intervals 4.5-6.5, 6.5-8.5 and $>$8.5, respectively.}
46   \end{center}
47   \end{figure}
48  
49 < \begin{figure}[bt]
49 > \begin{figure}[tb]
50   \begin{center}
51   \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
52 < \caption{\label{fig:abcdMC}\protect Distributions of SumJetPt
53 < vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo.  Here we also
44 < show our choice of ABCD regions.}
52 > \caption{\label{fig:abcdMC}\protect Distributions of MET$/\sqrt{\rm SumJetPt}$ vs.
53 > SumJetPt for SM Monte Carlo.  Here we also show our choice of ABCD regions.}
54   \end{center}
55   \end{figure}
56  
# Line 50 | Line 59 | Our choice of ABCD regions is shown in F
59   The signal region is region D.  The expected number of events
60   in the four regions for the SM Monte Carlo, as well as the BG
61   prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
62 < luminosity of 35 pb$^{-1}$.  The ABCD method is accurate
63 < to about 20\%.
62 > luminosity of 35 pb$^{-1}$.  The ABCD method with chosen boundaries is accurate
63 > to about 20\%. As shown in Table~\ref{tab:abcdsyst}, we assess systematic uncertainties
64 > by varying the boundaries by an amount consistent with the hadronic energy scale uncertainty,
65 > which we take as $\pm$5\% for SumJetPt and $\pm$2.5\% for MET/$\sqrt{\rm SumJetPt}$, since the
66 > uncertainty on this quantity partially cancels due to the fact that it is a ratio of correlated
67 > quantities. Based on these studies we assess a correction factor $k_{ABCD} = 1.2 \pm 0.2$ to the
68 > predicted yield using the ABCD method.
69 >
70 >
71   %{\color{red} Avi wants some statement about stability
72   %wrt changes in regions.  I am not sure that we have done it and
73   %I am not sure it is necessary (Claudio).}
74  
75 < \begin{table}[htb]
75 > \begin{table}[ht]
76   \begin{center}
77   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
78   35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
79 < the signal region given by A$\times$C/B. Here 'SM other' is the sum
79 > the signal region given by A $\times$ C / B. Here `SM other' is the sum
80   of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
81   $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
82 < \begin{tabular}{l||c|c|c|c||c}
82 > \begin{tabular}{lccccc}
83 > \hline
84 >         sample                          &              A   &              B   &              C   &              D   &    A $\times$ C / B \\
85   \hline
86 <         sample                          &              A   &              B   &              C   &              D   &    A$\times$C/B \\
86 >
87 >
88   \hline
89   $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
90 <   $Z^0$ + jets                          &           0.00   &           1.16   &           0.08   &           0.08   &           0.00  \\
90 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &           0.03   &           1.47   &           0.10   &           0.10   &           0.00  \\
91         SM other                          &           0.65   &           2.31   &           0.17   &           0.14   &           0.05  \\
92   \hline
93 <    total SM MC                          &           8.61   &          36.54   &           5.05   &           1.41   &           1.19  \\
93 >    total SM MC                          &           8.63   &          36.85   &           5.07   &           1.43   &           1.19  \\
94 > \hline
95 > \end{tabular}
96 > \end{center}
97 > \end{table}
98 >
99 >
100 >
101 > \begin{table}[ht]
102 > \begin{center}
103 > \caption{\label{tab:abcdsyst} Results of the systematic study of the ABCD method by varying the boundaries
104 > between the ABCD regions shown in Fig.~\ref{fig:abcdMC}. Here $x_1$ is the lower SumJetPt boundary and
105 > $x_2$ is the boundary separating regions A and B from C and D, their nominal values are 125 and 300~GeV,
106 > respectively. $y_1$ is the lower MET/$\sqrt{\rm SumJetPt}$ boundary and
107 > $y_2$ is the boundary separating regions B and C from A and D, their nominal values are 4.5 and 8.5~GeV$^{1/2}$,
108 > respectively.}
109 > \begin{tabular}{cccc|c}
110 > \hline
111 > $x_1$   &   $x_2$ & $y_1$   &   $y_2$ & Observed/Predicted \\
112 > \hline
113 > nominal & nominal & nominal & nominal & 1.20     \\
114 > +5\%    & +5\%    & +2.5\%  & +2.5\%  & 1.38     \\
115 > +5\%    & +5\%    & nominal & nominal & 1.31     \\
116 > nominal & nominal & +2.5\%  & +2.5\%  & 1.25     \\
117 > nominal & +5\%    & nominal & +2.5\%  & 1.32     \\
118 > nominal & -5\%    & nominal & -2.5\%  & 1.16     \\
119 > -5\%    & -5\%    & +2.5\%  & +2.5\%  & 1.21     \\
120 > +5\%    & +5\%    & -2.5\%  & -2.5\%  & 1.26     \\
121   \hline
122   \end{tabular}
123   \end{center}
# Line 93 | Line 139 | In practice one has to rescale the resul
139   to account for the fact that any dilepton selection must include a
140   moderate \met cut in order to reduce Drell Yan backgrounds.  This
141   is discussed in Section 5.3 of Reference~\cite{ref:ourvictory}; for a \met
142 < cut of 50 GeV, the rescaling factor is obtained from the data as
142 > cut of 50 GeV, the rescaling factor is obtained from the MC as
143  
144   \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
145   \begin{center}
# Line 118 | Line 164 | There are several effects that spoil the
164   $P_T(\ell\ell)$:
165   \begin{itemize}
166   \item $Ws$ in top events are polarized.  Neutrinos are emitted preferentially
167 < forward in the $W$ rest frame, thus the $P_T(\nu\nu)$ distribution is harder
167 > parallel to the $W$ velocity while charged leptons are emitted prefertially
168 > anti-parallel. Thus the $P_T(\nu\nu)$ distribution is harder
169   than the $P_T(\ell\ell)$ distribution for top dilepton events.
170   \item The lepton selections results in $P_T$ and $\eta$ cuts on the individual
171   leptons that have no simple correspondance to the neutrino requirements.
172   \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
173   neutrinos which is only partially compensated by the $K$ factor above.
174   \item The \met resolution is much worse than the dilepton $P_T$ resolution.
175 < When convoluted with a falling spectrum in the tails of \met, this result
175 > When convoluted with a falling spectrum in the tails of \met, this results
176   in a harder spectrum for \met than the original $P_T(\nu\nu)$.
177   \item The \met response in CMS is not exactly 1.  This causes a distortion
178   in the \met distribution that is not present in the $P_T(\ell\ell)$ distribution.
# Line 136 | Line 183 | of $P_T(\ell\ell)$ and $P_T(\nu\nu)$ do
183   sources.  These events can affect the background prediction.  Particularly
184   dangerous are high $P_T$ Drell Yan events that barely pass the \met$>$ 50
185   GeV selection.  They will tend to push the data-driven background prediction up.
186 + Therefore we estimate the number of DY events entering the background prediction
187 + using the $R_{out/in}$ method as described in Sec.~\ref{sec:othBG}.
188   \end{itemize}
189  
190   We have studied these effects in SM Monte Carlo, using a mixture of generator and
# Line 158 | Line 207 | under different assumptions.  See text f
207   4&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & Y          & 1.55  \\
208   5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
209   6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
210 < 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.18  \\
210 > 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.38  \\
211 > %%%NOTE: updated value 1.18 -> 1.46 since 2/3 DY events have been removed by updated analysis selections,
212 > %%%dpt/pt cut and general lepton veto
213   \hline
214   \end{tabular}
215   \end{center}
# Line 176 | Line 227 | Going from GEN to RECOSIM, the change in
227   % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
228   %for each 1.5\% change in \met response.}.  
229   Finally, contamination from non $t\bar{t}$
230 < events can have a significant impact on the BG prediction.  The changes between
231 < lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
232 < Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
233 < is statistically not well quantified).
230 > events can have a significant impact on the BG prediction.  
231 > %The changes between
232 > %lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
233 > %Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
234 > %is statistically not well quantified).
235  
236   An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
237   not include effects of spin correlations between the two top quarks.  
# Line 248 | Line 300 | using the ABCD and $P_T(\ell \ell)$ meth
300   \hline
301              &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
302   \hline
303 < SM only     &      1.41       &      1.19    &             0.96  \\
304 < SM + LM0    &      7.88       &      4.24    &             2.28  \\
305 < SM + LM1    &      3.98       &      1.53    &             1.44  \\
303 > SM only     &      1.43       &      1.19    &             1.03  \\
304 > SM + LM0    &      7.90       &      4.23    &             2.35  \\
305 > SM + LM1    &      4.00       &      1.53    &             1.51  \\
306   \hline
307   \end{tabular}
308   \end{center}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines