27 |
|
Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs |
28 |
|
sumJetPt plane to estimate the background in a data driven way. |
29 |
|
|
30 |
< |
\begin{figure}[tb] |
30 |
> |
\begin{figure}[bht] |
31 |
|
\begin{center} |
32 |
|
\includegraphics[width=0.75\linewidth]{uncorrelated.pdf} |
33 |
|
\caption{\label{fig:uncor}\protect Distributions of SumJetPt |
36 |
|
\end{center} |
37 |
|
\end{figure} |
38 |
|
|
39 |
< |
\begin{figure}[bt] |
39 |
> |
\begin{figure}[tb] |
40 |
|
\begin{center} |
41 |
|
\includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf} |
42 |
|
\caption{\label{fig:abcdMC}\protect Distributions of SumJetPt |
56 |
|
%wrt changes in regions. I am not sure that we have done it and |
57 |
|
%I am not sure it is necessary (Claudio).} |
58 |
|
|
59 |
< |
\begin{table}[htb] |
59 |
> |
\begin{table}[ht] |
60 |
|
\begin{center} |
61 |
|
\caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for |
62 |
|
35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in |