ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/datadriven.tex
(Generate patch)

Comparing UserCode/claudioc/OSNote2010/datadriven.tex (file contents):
Revision 1.7 by claudioc, Thu Nov 4 04:14:21 2010 UTC vs.
Revision 1.22 by benhoob, Mon Nov 15 10:07:57 2010 UTC

# Line 2 | Line 2
2   \label{sec:datadriven}
3   We have developed two data-driven methods to
4   estimate the background in the signal region.
5 < The first one explouts the fact that
6 < \met and \met$/\sqrt{\rm SumJetPt}$ are nearly
5 > The first one exploits the fact that
6 > SumJetPt and \met$/\sqrt{\rm SumJetPt}$ are nearly
7   uncorrelated for the $t\bar{t}$ background
8   (Section~\ref{sec:abcd});  the second one
9   is based on the fact that in $t\bar{t}$ the
# Line 12 | Line 12 | nearly the same as the $P_T$ of the pair
12   from $W$-decays, which is reconstructed as \met in the
13   detector.
14  
15 < In 30 pb$^{-1}$ we expect $\approx$ 1 SM event in
16 < the signal region.  The expectations from the LMO
17 < and LM1 SUSY benchmark points are 5.6 and
18 < 2.2 events respectively.
15 >
16   %{\color{red} I took these
17   %numbers from the twiki, rescaling from 11.06 to 30/pb.
18   %They seem too large...are they really right?}
# Line 24 | Line 21 | and LM1 SUSY benchmark points are 5.6 an
21   \subsection{ABCD method}
22   \label{sec:abcd}
23  
24 < We find that in $t\bar{t}$ events \met and
25 < \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated.
26 < This is demonstrated in Figure~\ref{fig:uncor}.
24 > We find that in $t\bar{t}$ events SumJetPt and
25 > \met$/\sqrt{\rm SumJetPt}$ are nearly uncorrelated,
26 > as demonstrated in Figure~\ref{fig:uncor}.
27   Thus, we can use an ABCD method in the \met$/\sqrt{\rm SumJetPt}$ vs
28   sumJetPt plane to estimate the background in a data driven way.
29  
30 < \begin{figure}[tb]
30 > \begin{figure}[bht]
31   \begin{center}
32   \includegraphics[width=0.75\linewidth]{uncorrelated.pdf}
33   \caption{\label{fig:uncor}\protect Distributions of SumJetPt
# Line 39 | Line 36 | MET$/\sqrt{\rm SumJetPt}$.}
36   \end{center}
37   \end{figure}
38  
39 < \begin{figure}[bt]
39 > \begin{figure}[tb]
40   \begin{center}
41   \includegraphics[width=0.5\linewidth, angle=90]{abcdMC.pdf}
42 < \caption{\label{fig:abcdMC}\protect Distributions of SumJetPt
43 < vs. MET$/\sqrt{\rm SumJetPt}$ for SM Monte Carlo.  Here we also
47 < show our choice of ABCD regions.}
42 > \caption{\label{fig:abcdMC}\protect Distributions of MET$/\sqrt{\rm SumJetPt}$ vs.
43 > SumJetPt for SM Monte Carlo.  Here we also show our choice of ABCD regions.}
44   \end{center}
45   \end{figure}
46  
# Line 53 | Line 49 | Our choice of ABCD regions is shown in F
49   The signal region is region D.  The expected number of events
50   in the four regions for the SM Monte Carlo, as well as the BG
51   prediction AC/B are given in Table~\ref{tab:abcdMC} for an integrated
52 < luminosity of 30 pb$^{-1}$.  The ABCD method is accurate
53 < to about 10\%. {\color{red} Avi wants some statement about stability
54 < wrt changes in regions.  I am not sure that we have done it and
55 < I am not sure it is necessary (Claudio).}
52 > luminosity of 35 pb$^{-1}$.  The ABCD method is accurate
53 > to about 20\%.
54 > %{\color{red} Avi wants some statement about stability
55 > %wrt changes in regions.  I am not sure that we have done it and
56 > %I am not sure it is necessary (Claudio).}
57  
58 < \begin{table}[htb]
58 > \begin{table}[ht]
59   \begin{center}
60   \caption{\label{tab:abcdMC} Expected SM Monte Carlo yields for
61 < 30 pb$^{-1}$ in the ABCD regions.}
62 < \begin{tabular}{|l|c|c|c|c||c|}
61 > 35 pb$^{-1}$ in the ABCD regions, as well as the predicted yield in
62 > the signal region given by A $\times$ C / B. Here `SM other' is the sum
63 > of non-dileptonic $t\bar{t}$ decays, $W^{\pm}$+jets, $W^+W^-$,
64 > $W^{\pm}Z^0$, $Z^0Z^0$ and single top.}
65 > \begin{tabular}{lccccc}
66 > \hline
67 >         sample                          &              A   &              B   &              C   &              D   &    A $\times$ C / B \\
68 > \hline
69 >
70 >
71 > \hline
72 > $t\bar{t}\rightarrow \ell^{+}\ell^{-}$   &           7.96   &          33.07   &           4.81   &           1.20   &           1.16  \\
73 > $Z^0 \rightarrow \ell^{+}\ell^{-}$       &           0.03   &           1.47   &           0.10   &           0.10   &           0.00  \\
74 >       SM other                          &           0.65   &           2.31   &           0.17   &           0.14   &           0.05  \\
75 > \hline
76 >    total SM MC                          &           8.63   &          36.85   &           5.07   &           1.43   &           1.19  \\
77   \hline
67 Sample   & A   & B    & C   & D   & AC/D \\ \hline
68 ttdil    & 6.9 & 28.6 & 4.2 & 1.0 & 1.0  \\
69 Zjets    & 0.0 & 1.3  & 0.1 & 0.1 & 0.0  \\
70 Other SM & 0.5 & 2.0  & 0.1 & 0.1 & 0.0  \\ \hline
71 total MC & 7.4 & 31.9 & 4.4 & 1.2 & 1.0 \\ \hline
78   \end{tabular}
79   \end{center}
80   \end{table}
# Line 89 | Line 95 | In practice one has to rescale the resul
95   to account for the fact that any dilepton selection must include a
96   moderate \met cut in order to reduce Drell Yan backgrounds.  This
97   is discussed in Section 5.3 of Reference~\cite{ref:ourvictory}; for a \met
98 < cut of 50 GeV, the rescaling factor is obtained from the data as
98 > cut of 50 GeV, the rescaling factor is obtained from the MC as
99  
100   \newcommand{\ptll} {\ensuremath{P_T(\ell\ell)}}
101   \begin{center}
# Line 98 | Line 104 | $ K = \frac{\int_0^{\infty} {\cal N}(\pt
104  
105  
106   Monte Carlo studies give values of $K$ that are typically between 1.5 and 1.6,
107 < depending on selection details.
107 > depending on selection details.  
108 > %%%TO BE REPLACED
109 > %Given the integrated luminosity of the
110 > %present dataset, the determination of $K$ in data is severely statistics
111 > %limited.  Thus, we take $K$ from $t\bar{t}$ Monte Carlo as
112 >
113 > %\begin{center}
114 > %$ K_{MC} = \frac{\int_0^{\infty} {\cal N}(\met)~~d\met~}{\int_{50}^{\infty} {\cal N}(\met)~~d\met~}$
115 > %\end{center}
116 >
117 > %\noindent {\color{red} For the 11 pb result we have used $K$ from data.}
118  
119   There are several effects that spoil the correspondance between \met and
120   $P_T(\ell\ell)$:
121   \begin{itemize}
122   \item $Ws$ in top events are polarized.  Neutrinos are emitted preferentially
123 < forward in the $W$ rest frame, thus the $P_T(\nu\nu)$ distribution is harder
123 > parallel to the $W$ velocity while charged leptons are emitted prefertially
124 > anti-parallel. Thus the $P_T(\nu\nu)$ distribution is harder
125   than the $P_T(\ell\ell)$ distribution for top dilepton events.
126   \item The lepton selections results in $P_T$ and $\eta$ cuts on the individual
127   leptons that have no simple correspondance to the neutrino requirements.
128   \item Similarly, the \met$>$50 GeV cut introduces an asymmetry between leptons and
129   neutrinos which is only partially compensated by the $K$ factor above.
130   \item The \met resolution is much worse than the dilepton $P_T$ resolution.
131 < When convoluted with a falling spectrum in the tails of \met, this result
131 > When convoluted with a falling spectrum in the tails of \met, this results
132   in a harder spectrum for \met than the original $P_T(\nu\nu)$.
133   \item The \met response in CMS is not exactly 1.  This causes a distortion
134   in the \met distribution that is not present in the $P_T(\ell\ell)$ distribution.
# Line 122 | Line 139 | of $P_T(\ell\ell)$ and $P_T(\nu\nu)$ do
139   sources.  These events can affect the background prediction.  Particularly
140   dangerous are high $P_T$ Drell Yan events that barely pass the \met$>$ 50
141   GeV selection.  They will tend to push the data-driven background prediction up.
142 + Therefore we estimate the number of DY events entering the background prediction
143 + using the $R_{out/in}$ method as described in Sec.~\ref{sec:othBG}.
144   \end{itemize}
145  
146   We have studied these effects in SM Monte Carlo, using a mixture of generator and
# Line 144 | Line 163 | under different assumptions.  See text f
163   4&Y                        &     N          &   N      &  GEN    &   Y             &   Y    & Y          & 1.55  \\
164   5&Y                        &     N          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.51  \\
165   6&Y                        &     Y          &   N      & RECOSIM &   Y             &   Y    & Y          & 1.58  \\
166 < 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.18  \\
166 > 7&Y                        &     Y          &   Y      & RECOSIM &   Y             &   Y    & Y          & 1.38  \\
167 > %%%NOTE: updated value 1.18 -> 1.46 since 2/3 DY events have been removed by updated analysis selections,
168 > %%%dpt/pt cut and general lepton veto
169   \hline
170   \end{tabular}
171   \end{center}
# Line 162 | Line 183 | Going from GEN to RECOSIM, the change in
183   % by $\approx 4\%$\footnote{We find that observed/predicted changes by roughly 0.1
184   %for each 1.5\% change in \met response.}.  
185   Finally, contamination from non $t\bar{t}$
186 < events can have a significant impact on the BG prediction.  The changes between
187 < lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
188 < Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
189 < is statistically not well quantified).
186 > events can have a significant impact on the BG prediction.  
187 > %The changes between
188 > %lines 6 and 7 of Table~\ref{tab:victorybad} is driven by 3
189 > %Drell Yan events that pass the \met selection in Monte Carlo (thus the effect
190 > %is statistically not well quantified).
191  
192   An additional source of concern is that the CMS Madgraph $t\bar{t}$ MC does
193   not include effects of spin correlations between the two top quarks.  
194   We have studied this effect at the generator level using Alpgen.  We find
195   that the bias is at the few percent level.
196  
197 + %%%TO BE REPLACED
198 + %Based on the results of Table~\ref{tab:victorybad}, we conclude that the
199 + %naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
200 + %be corrected by a factor of {\color{red} $ K_{\rm{fudge}} =1.2 \pm 0.3$
201 + %(We still need to settle on thie exact value of this.
202 + %For the 11 pb analysis it is taken as =1.)} . The quoted
203 + %uncertainty is based on the stability of the Monte Carlo tests under
204 + %variations of event selections, choices of \met algorithm, etc.
205 + %For example, we find that observed/predicted changes by roughly 0.1
206 + %for each 1.5\% change in the average \met response.  
207 +
208   Based on the results of Table~\ref{tab:victorybad}, we conclude that the
209   naive data driven background estimate based on $P_T{(\ell\ell)}$ needs to
210 < be corrected by a factor of {\color{red} $1.2 \pm 0.3$ (We need to talk
211 < about this)} . The quoted
212 < uncertainty is based on the stability of the Monte Carlo tests under
210 > be corrected by a factor of $ K_C = X \pm Y$.
211 > The value of this correction factor as well as the systematic uncertainty
212 > will be assessed using 38X ttbar madgraph MC. In the following we use
213 > $K_C = 1$ for simplicity. Based on previous MC studies we foresee a correction
214 > factor of $K_C \approx 1.2 - 1.5$, and we will assess an uncertainty
215 > based on the stability of the Monte Carlo tests under
216   variations of event selections, choices of \met algorithm, etc.
217 < For example, We find that observed/predicted changes by roughly 0.1
218 < for each 1.5\% change in the average \met response.  
217 > For example, we find that observed/predicted changes by roughly 0.1
218 > for each 1.5\% change in the average \met response.
219  
220  
221  
# Line 205 | Line 241 | in the ABCD method but not in the $P_T(\
241  
242   The LM points are benchmarks for SUSY analyses at CMS.  The effects
243   of signal contaminations for a couple such points are summarized
244 < in Table~\ref{tab:sigcontABCD} and~\ref{tab:sigcontPT}.
209 < Signal contamination is definitely an important
244 > in Table~\ref{tab:sigcont}. Signal contamination is definitely an important
245   effect for these two LM points, but it does not totally hide the
246   presence of the signal.
247  
248  
249   \begin{table}[htb]
250   \begin{center}
251 < \caption{\label{tab:sigcontABCD} Effects of signal contamination
252 < for the background predictions of the ABCD method including LM0 or
253 < LM1.  Results
254 < are normalized to 30 pb$^{-1}$.}
255 < \begin{tabular}{|c||c|c||c|c|}
221 < \hline
222 < SM         & SM$+$LM0    & BG Prediction & Sm$+$LM1     & BG Prediction \\
223 < Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
224 < 1.2        & 6.8         & 3.7           & 3.4          & 1.3 \\
251 > \caption{\label{tab:sigcont} Effects of signal contamination
252 > for the two data-driven background estimates. The three columns give
253 > the expected yield in the signal region and the background estimates
254 > using the ABCD and $P_T(\ell \ell)$ methods. Results are normalized to 35~pb$^{-1}$.}
255 > \begin{tabular}{lccc}
256   \hline
257 < \end{tabular}
258 < \end{center}
259 < \end{table}
260 <
261 < \begin{table}[htb]
231 < \begin{center}
232 < \caption{\label{tab:sigcontPT} Effects of signal contamination
233 < for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
234 < LM1.  Results
235 < are normalized to 30 pb$^{-1}$. {\color{red} Does this BG prediction include
236 < the fudge factor of 1.4 or watever because the method is not perfect.}}
237 < \begin{tabular}{|c||c|c||c|c|}
238 < \hline
239 < SM         & SM$+$LM0    & BG Prediction & Sm$+$LM1     & BG Prediction \\
240 < Background & Contribution& Including LM0 & Contribution & Including LM1  \\ \hline
241 < 1.2        & 6.8         & 2.2           & 3.4          & 1.5 \\
257 >            &      Yield      &      ABCD    & $P_T(\ell \ell)$  \\
258 > \hline
259 > SM only     &      1.43       &      1.19    &             1.03  \\
260 > SM + LM0    &      7.90       &      4.23    &             2.35  \\
261 > SM + LM1    &      4.00       &      1.53    &             1.51  \\
262   \hline
263   \end{tabular}
264   \end{center}
265   \end{table}
266  
267 +
268 +
269 + %\begin{table}[htb]
270 + %\begin{center}
271 + %\caption{\label{tab:sigcontABCD} Effects of signal contamination
272 + %for the background predictions of the ABCD method including LM0 or
273 + %LM1.  Results
274 + %are normalized to 30 pb$^{-1}$.}
275 + %\begin{tabular}{|c|c||c|c||c|c|}
276 + %\hline
277 + %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
278 + %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
279 + %1.2        & 1.0            & 6.8          & 3.7           & 3.4          & 1.3 \\
280 + %\hline
281 + %\end{tabular}
282 + %\end{center}
283 + %\end{table}
284 +
285 + %\begin{table}[htb]
286 + %\begin{center}
287 + %\caption{\label{tab:sigcontPT} Effects of signal contamination
288 + %for the background predictions of the $P_T(\ell\ell)$ method including LM0 or
289 + %LM1.  Results
290 + %are normalized to 30 pb$^{-1}$.}
291 + %\begin{tabular}{|c|c||c|c||c|c|}
292 + %\hline
293 + %SM         & BG Prediction  & SM$+$LM0     & BG Prediction & SM$+$LM1     & BG Prediction \\
294 + %Background & SM Only        & Contribution & Including LM0 & Contribution & Including LM1  \\ \hline
295 + %1.2        & 1.0            & 6.8          & 2.2           & 3.4          & 1.5 \\
296 + %\hline
297 + %\end{tabular}
298 + %\end{center}
299 + %\end{table}
300 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines