ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/eventsel.tex
Revision: 1.11
Committed: Thu Nov 11 12:34:17 2010 UTC (14 years, 5 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
Changes since 1.10: +26 -12 lines
Log Message:
changes after talking to Ben

File Contents

# User Rev Content
1 claudioc 1.1 \section{Event Preselection}
2     \label{sec:eventSel}
3 claudioc 1.6 %{\color{red} This needs to be fixed up -- probably many mistakes present.}\\
4 claudioc 1.1 As mentioned in the introduction, the preselection is based on the
5     $t\bar{t}$ analysis. We select events with two opposite sign isolated
6     leptons ($ee$, $e\mu$, or $\mu\mu$); one of the leptons must
7     have $P_T > 20$ GeV,
8 claudioc 1.11 the other one must have $P_T > 10$ GeV. Events consistent with $Z$ are rejected.
9     In case of events with
10 claudioc 1.5 more than two such leptons, we select the pair that maximizes the scalar
11 benhoob 1.10 sum of lepton $P_T$'s.
12     There must be two JPT
13 claudioc 1.5 jets of $P_T > 30$ GeV and $|\eta| < 2.5$; the scalar sum of the
14     $P_T$ of all such jets must exceed 100 GeV; jets must pass
15 claudioc 1.11 {\tt caloJetId} and be separated by $\Delta R >$ 0.4 from any
16     lepton passing the selection.
17 benhoob 1.10 Finally $\met > 50$ GeV (we use tcMet). More details are given in the subsections below.
18 claudioc 1.1
19     \subsection{Event Cleanup}
20     \label{sec:cleanup}
21     \begin{itemize}
22     \item Scraping cut: if there are $\geq$ 10 tracks, require at
23     least 25\% of them to be high purity.
24     \item Require at least one good vertex:
25     \begin{itemize}
26     \item not fake
27     \item ndof $>$ 4
28     \item $|\rho| < 2$ cm
29 claudioc 1.3 \item $|z| < 24$ cm.
30 claudioc 1.1 \end{itemize}
31     \end{itemize}
32    
33    
34     \subsection{Muon Selection}
35     \label{sec:muon}
36    
37     Muon candidates are RECO muon objects passing the following
38     requirements:
39     \begin{itemize}
40    
41 claudioc 1.5 \item $|\eta| < 2.4$.
42 claudioc 1.1
43     \item Global Muon and Tracker Muon.
44    
45     \item $\chi^2$/ndof of global fit $<$ 10.
46    
47     \item At least 11 hits in the tracker fit.
48    
49     \item Transverse impact parameter with respect to the beamspot $<$ 200 $\mu$m.
50    
51     \item $Iso \equiv $ $E_T^{\rm iso}$/Max(20 GeV, $P_T$) $<$ 0.15.
52     $E_T^{\rm iso}$
53     is defined as the sum of transverse energy/momentum deposits in ecal,
54     hcal, and tracker, in a cone of 0.3.
55    
56     \item At least one of the hits from the
57     standalone muon must be used in the global fit.
58    
59 claudioc 1.11 \item Require tracker $\Delta P_T/P_T < 0.1$. This cut was not in the original top analysis.
60     It is motivated by the observation of
61     poorly measured muons in data with large
62     relative $P_T$ uncertainty, giving significant contributions to the \met.
63 claudioc 1.9 %{\color{red} This is not applied to the 11 pb iteration.}
64 claudioc 1.7
65 claudioc 1.6
66 claudioc 1.1 \end{itemize}
67    
68    
69    
70 claudioc 1.2 \subsection{Electron Selection}
71 claudioc 1.1 \label{sec:electron}
72    
73     Electron candidates are RECO GSF electrons passing the following
74     requirements:
75    
76     \begin{itemize}
77    
78     \item $P_T > 10$ GeV. (The $t\bar{t}$ analysis uses 20 GeV but for
79     completeness we calculate FR down to 10 GeV).
80    
81     \item $|\eta| < 2.5$.
82    
83     \item SuperCluster $E_T > 10$ GeV.
84    
85     \item The electron must be ecal seeded.
86    
87     \item VBTF90 identification\cite{ref:vbtf}.
88    
89     \item Transverse impact parameter with respect to the beamspot $<$ 400 $\mu$m.
90    
91     \item $Iso \equiv $ $E_T^{\rm iso}$/Max(20 GeV, $P_T$) $<$ 0.15.
92     $E_T^{\rm iso}$
93     is defined as the sum of transverse energy/momentum deposits in ecal,
94     hcal, and tracker, in a
95     cone of 0.3. A 1 GeV pedestal is subtracted from the ecal energy
96     deposition in the EB, however the ecal energy is never allowed to
97     go negative.
98    
99     \item Electrons with a tracker or global muon within $\Delta R$ of
100     0.1 are vetoed.
101    
102     \item The number of missing expected inner hits must be less than
103     two\cite{ref:conv}.
104    
105     \item Conversion removal via partner track finding: any electron
106     where an additional GeneralTrack is found with $Dist < 0.02$ cm
107     and $\Delta \cot \theta < 0.02$ is vetoed\cite{ref:conv}.
108    
109 claudioc 1.4 \item Cleaning for ECAL spike (aka Swiss-Cross cleaning) has been applied
110     at the reconstruction level (CMSSW 38x).
111 claudioc 1.1
112     \end{itemize}
113    
114 claudioc 1.5 \subsection{Invariant mass requirement}
115 claudioc 1.2 \label{sec:zveto}
116    
117     We remove $e^+e^-$ and $\mu^+ \mu^-$ events with invariant
118 claudioc 1.5 mass between 76 and 106 GeV. We also remove events
119 claudioc 1.11 with invariant mass $<$ 10 GeV, since this kinematical region is
120     not well reprodced in CMS Monte Carlos.
121    
122     In addition, we remove $Z \to \mu\mu\gamma$
123     candidates with the $\gamma$ collinear with one of the muons. This is
124     done as follows:
125     if the ecal energy associated with one of the muons is greater than 6 GeV,
126     we add this energy to the momentum of the initial muon, and we recompute
127     the $\mu\mu$ mass. If this mass is between 76 and 106 GeV, the event is rejected.
128    
129 claudioc 1.2
130     \subsection{Trigger Selection}
131 claudioc 1.1 \label{sec:trigSel}
132    
133     Because most of the triggers implemented in the 2nd half of the
134     2010 run were not implemented in the Monte Carlo, no trigger
135     selection is applied on Monte Carlo data. As discussed in
136     Section~\ref{sec:trgEff}, a trigger efficiency weight is applied
137     to each event, based on the trigger efficiencies measured on data.
138     Trigger efficiency weights are very close to 1.
139    
140 claudioc 1.5 %For data, we require the logical OR of all (or most?) unprescaled
141     %single and double lepton triggers that were deployed during the 2010
142     %run. These are:
143     %{\color{red} Here we need to list the triggers, somehow.}
144    
145     For data, we use a cocktail of unprescaled single
146     and double lepton triggers. An event
147     in the $ee$ final state is required to pass at least 1
148     single- or double-electron trigger, a
149     $\mu\mu$ event is required to pass at least 1 single
150     or double-muon trigger, while an $e\mu$ event
151     is required to pass at least 1 single-muon, single-electron,
152     or $e-\mu$ cross trigger.
153     % We currently
154     % do not require MC events to pass any triggers.
155 claudioc 1.1
156 claudioc 1.11
157    
158    
159    
160    
161    
162    
163    
164 claudioc 1.5 \begin{itemize}
165     \item single-muon triggers
166     \begin{itemize}
167     \item \verb=HLT_Mu5=
168     \item \verb=HLT_Mu7=
169     \item \verb=HLT_Mu9=
170     \item \verb=HLT_Mu11=
171     \item \verb=HLT_Mu13_v1=
172     \item \verb=HLT_Mu15_v1=
173     \item \verb=HLT_Mu17_v1=
174     \item \verb=HLT_Mu19_v1=
175     \end{itemize}
176     \item double-muon triggers
177     \begin{itemize}
178     \item \verb=HLT_DoubleMu3=
179     \item \verb=HLT_DoubleMu3_v2=
180     \item \verb=HLT_DoubleMu5_v1=
181     \end{itemize}
182     \item single-electron triggers
183     \begin{itemize}
184     \item \verb=HLT_Ele10_SW_EleId_L1R=
185     \item \verb=HLT_Ele10_LW_EleId_L1R=
186     \item \verb=HLT_Ele10_LW_L1R=
187     \item \verb=HLT_Ele10_SW_L1R=
188     \item \verb=HLT_Ele15_SW_CaloEleId_L1R=
189     \item \verb=HLT_Ele15_SW_EleId_L1R=
190     \item \verb=HLT_Ele15_SW_L1R=
191     \item \verb=HLT_Ele15_LW_L1R=
192     \item \verb=HLT_Ele17_SW_TightEleId_L1R=
193     \item \verb=HLT_Ele17_SW_TighterEleId_L1R_v1=
194     \item \verb=HLT_Ele17_SW_CaloEleId_L1R=
195     \item \verb=HLT_Ele17_SW_EleId_L1R=
196     \item \verb=HLT_Ele17_SW_LooseEleId_L1R=
197     \item \verb=HLT_Ele17_SW_TighterEleIdIsol_L1R_v2=
198     \item \verb=HLT_Ele20_SW_L1R=
199     \item \verb=HLT_Ele22_SW_TighterEleId_L1R_v2=
200     \item \verb=HLT_Ele32_SW_TightCaloEleIdTrack_L1R_v1=
201     \item \verb=HLT_Ele32_SW_TighterEleId_L1R_v2=
202     \item \verb=HLT_Ele27_SW_TightCaloEleIdTrack_L1R_v1=
203     \item \verb=HLT_Ele22_SW_TighterCaloIdIsol_L1R_v2=
204     \item \verb=HLT_Ele22_SW_TighterEleId_L1R_v3=
205     \item \verb=HLT_Ele22_SW_TighterCaloIdIsol_L1R_v2=
206     \end{itemize}
207     \item double-electron triggers
208     \begin{itemize}
209     \item \verb=HLT_DoubleEle15_SW_L1R_v1=
210     \item \verb=HLT_DoubleEle17_SW_L1R_v1=
211     \item \verb=HLT_Ele17_SW_TightCaloEleId_Ele8HE_L1R_v1=
212     \item \verb=HLT_Ele17_SW_TightCaloEleId_SC8HE_L1R_v1=
213     \item \verb=HLT_DoubleEle10_SW_L1R=
214     \item \verb=HLT_DoubleEle5_SW_L1R=
215     \end{itemize}
216     \item e-$\mu$ cross triggers
217     \begin{itemize}
218     \item \verb=HLT_Mu5_Ele5_v1=
219     \item \verb=HLT_Mu5_Ele9_v1=
220     \item \verb=HLT_Mu11_Ele8_v1=
221     \item \verb=HLT_Mu8_Ele8_v1=
222     \item \verb=HLT_Mu5_Ele13_v2=
223     \item \verb=HLT_Mu5_Ele17_v1=
224     \end{itemize}
225     \end{itemize}