ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/claudioc/OSNote2010/eventsel.tex
Revision: 1.12
Committed: Thu Nov 11 16:22:13 2010 UTC (14 years, 5 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
Changes since 1.11: +13 -7 lines
Log Message:
triv

File Contents

# User Rev Content
1 claudioc 1.1 \section{Event Preselection}
2     \label{sec:eventSel}
3 claudioc 1.12 The purpose of the preselection is to define a data sample rich
4     in $t\bar{t} \to$ dileptons. We compare the kinematical
5     properties of this sample with expectations from $t\bar{t}$
6     Monte Carlo.
7    
8     The preselection is based on the
9     $t\bar{t}$ analysis~\cite{ref:top}.
10     We select events with two opposite sign isolated
11 claudioc 1.1 leptons ($ee$, $e\mu$, or $\mu\mu$); one of the leptons must
12     have $P_T > 20$ GeV,
13 claudioc 1.11 the other one must have $P_T > 10$ GeV. Events consistent with $Z$ are rejected.
14     In case of events with
15 claudioc 1.5 more than two such leptons, we select the pair that maximizes the scalar
16 benhoob 1.10 sum of lepton $P_T$'s.
17     There must be two JPT
18 claudioc 1.5 jets of $P_T > 30$ GeV and $|\eta| < 2.5$; the scalar sum of the
19     $P_T$ of all such jets must exceed 100 GeV; jets must pass
20 claudioc 1.11 {\tt caloJetId} and be separated by $\Delta R >$ 0.4 from any
21     lepton passing the selection.
22 benhoob 1.10 Finally $\met > 50$ GeV (we use tcMet). More details are given in the subsections below.
23 claudioc 1.1
24     \subsection{Event Cleanup}
25     \label{sec:cleanup}
26     \begin{itemize}
27     \item Scraping cut: if there are $\geq$ 10 tracks, require at
28     least 25\% of them to be high purity.
29     \item Require at least one good vertex:
30     \begin{itemize}
31     \item not fake
32     \item ndof $>$ 4
33     \item $|\rho| < 2$ cm
34 claudioc 1.3 \item $|z| < 24$ cm.
35 claudioc 1.1 \end{itemize}
36     \end{itemize}
37    
38    
39     \subsection{Muon Selection}
40     \label{sec:muon}
41    
42     Muon candidates are RECO muon objects passing the following
43     requirements:
44     \begin{itemize}
45    
46 claudioc 1.5 \item $|\eta| < 2.4$.
47 claudioc 1.1
48     \item Global Muon and Tracker Muon.
49    
50     \item $\chi^2$/ndof of global fit $<$ 10.
51    
52     \item At least 11 hits in the tracker fit.
53    
54     \item Transverse impact parameter with respect to the beamspot $<$ 200 $\mu$m.
55    
56     \item $Iso \equiv $ $E_T^{\rm iso}$/Max(20 GeV, $P_T$) $<$ 0.15.
57     $E_T^{\rm iso}$
58     is defined as the sum of transverse energy/momentum deposits in ecal,
59     hcal, and tracker, in a cone of 0.3.
60    
61     \item At least one of the hits from the
62     standalone muon must be used in the global fit.
63    
64 claudioc 1.11 \item Require tracker $\Delta P_T/P_T < 0.1$. This cut was not in the original top analysis.
65     It is motivated by the observation of
66     poorly measured muons in data with large
67     relative $P_T$ uncertainty, giving significant contributions to the \met.
68 claudioc 1.9 %{\color{red} This is not applied to the 11 pb iteration.}
69 claudioc 1.7
70 claudioc 1.6
71 claudioc 1.1 \end{itemize}
72    
73    
74    
75 claudioc 1.2 \subsection{Electron Selection}
76 claudioc 1.1 \label{sec:electron}
77    
78     Electron candidates are RECO GSF electrons passing the following
79     requirements:
80    
81     \begin{itemize}
82    
83 claudioc 1.12 % \item $P_T > 10$ GeV. (The $t\bar{t}$ analysis uses 20 GeV but for
84     % completeness we calculate FR down to 10 GeV).
85 claudioc 1.1
86     \item $|\eta| < 2.5$.
87    
88     \item SuperCluster $E_T > 10$ GeV.
89    
90     \item The electron must be ecal seeded.
91    
92     \item VBTF90 identification\cite{ref:vbtf}.
93    
94     \item Transverse impact parameter with respect to the beamspot $<$ 400 $\mu$m.
95    
96     \item $Iso \equiv $ $E_T^{\rm iso}$/Max(20 GeV, $P_T$) $<$ 0.15.
97     $E_T^{\rm iso}$
98     is defined as the sum of transverse energy/momentum deposits in ecal,
99     hcal, and tracker, in a
100     cone of 0.3. A 1 GeV pedestal is subtracted from the ecal energy
101     deposition in the EB, however the ecal energy is never allowed to
102     go negative.
103    
104     \item Electrons with a tracker or global muon within $\Delta R$ of
105     0.1 are vetoed.
106    
107     \item The number of missing expected inner hits must be less than
108     two\cite{ref:conv}.
109    
110     \item Conversion removal via partner track finding: any electron
111     where an additional GeneralTrack is found with $Dist < 0.02$ cm
112     and $\Delta \cot \theta < 0.02$ is vetoed\cite{ref:conv}.
113    
114 claudioc 1.4 \item Cleaning for ECAL spike (aka Swiss-Cross cleaning) has been applied
115     at the reconstruction level (CMSSW 38x).
116 claudioc 1.1
117     \end{itemize}
118    
119 claudioc 1.5 \subsection{Invariant mass requirement}
120 claudioc 1.2 \label{sec:zveto}
121    
122     We remove $e^+e^-$ and $\mu^+ \mu^-$ events with invariant
123 claudioc 1.5 mass between 76 and 106 GeV. We also remove events
124 claudioc 1.11 with invariant mass $<$ 10 GeV, since this kinematical region is
125     not well reprodced in CMS Monte Carlos.
126    
127     In addition, we remove $Z \to \mu\mu\gamma$
128     candidates with the $\gamma$ collinear with one of the muons. This is
129     done as follows:
130     if the ecal energy associated with one of the muons is greater than 6 GeV,
131     we add this energy to the momentum of the initial muon, and we recompute
132     the $\mu\mu$ mass. If this mass is between 76 and 106 GeV, the event is rejected.
133    
134 claudioc 1.2
135     \subsection{Trigger Selection}
136 claudioc 1.1 \label{sec:trigSel}
137    
138     Because most of the triggers implemented in the 2nd half of the
139 claudioc 1.12 2010 run were not implemented in the Monte Carlo,
140     we do not make any requirements on HLT bits in the Monte Carlo.
141     Instead, as discussed in
142 claudioc 1.1 Section~\ref{sec:trgEff}, a trigger efficiency weight is applied
143     to each event, based on the trigger efficiencies measured on data.
144     Trigger efficiency weights are very close to 1.
145    
146 claudioc 1.5 %For data, we require the logical OR of all (or most?) unprescaled
147     %single and double lepton triggers that were deployed during the 2010
148     %run. These are:
149     %{\color{red} Here we need to list the triggers, somehow.}
150    
151     For data, we use a cocktail of unprescaled single
152     and double lepton triggers. An event
153     in the $ee$ final state is required to pass at least 1
154     single- or double-electron trigger, a
155     $\mu\mu$ event is required to pass at least 1 single
156     or double-muon trigger, while an $e\mu$ event
157     is required to pass at least 1 single-muon, single-electron,
158     or $e-\mu$ cross trigger.
159     % We currently
160     % do not require MC events to pass any triggers.
161 claudioc 1.1
162 claudioc 1.11
163    
164    
165    
166    
167    
168    
169    
170 claudioc 1.5 \begin{itemize}
171     \item single-muon triggers
172     \begin{itemize}
173     \item \verb=HLT_Mu5=
174     \item \verb=HLT_Mu7=
175     \item \verb=HLT_Mu9=
176     \item \verb=HLT_Mu11=
177     \item \verb=HLT_Mu13_v1=
178     \item \verb=HLT_Mu15_v1=
179     \item \verb=HLT_Mu17_v1=
180     \item \verb=HLT_Mu19_v1=
181     \end{itemize}
182     \item double-muon triggers
183     \begin{itemize}
184     \item \verb=HLT_DoubleMu3=
185     \item \verb=HLT_DoubleMu3_v2=
186     \item \verb=HLT_DoubleMu5_v1=
187     \end{itemize}
188     \item single-electron triggers
189     \begin{itemize}
190     \item \verb=HLT_Ele10_SW_EleId_L1R=
191     \item \verb=HLT_Ele10_LW_EleId_L1R=
192     \item \verb=HLT_Ele10_LW_L1R=
193     \item \verb=HLT_Ele10_SW_L1R=
194     \item \verb=HLT_Ele15_SW_CaloEleId_L1R=
195     \item \verb=HLT_Ele15_SW_EleId_L1R=
196     \item \verb=HLT_Ele15_SW_L1R=
197     \item \verb=HLT_Ele15_LW_L1R=
198     \item \verb=HLT_Ele17_SW_TightEleId_L1R=
199     \item \verb=HLT_Ele17_SW_TighterEleId_L1R_v1=
200     \item \verb=HLT_Ele17_SW_CaloEleId_L1R=
201     \item \verb=HLT_Ele17_SW_EleId_L1R=
202     \item \verb=HLT_Ele17_SW_LooseEleId_L1R=
203     \item \verb=HLT_Ele17_SW_TighterEleIdIsol_L1R_v2=
204     \item \verb=HLT_Ele20_SW_L1R=
205     \item \verb=HLT_Ele22_SW_TighterEleId_L1R_v2=
206     \item \verb=HLT_Ele32_SW_TightCaloEleIdTrack_L1R_v1=
207     \item \verb=HLT_Ele32_SW_TighterEleId_L1R_v2=
208     \item \verb=HLT_Ele27_SW_TightCaloEleIdTrack_L1R_v1=
209     \item \verb=HLT_Ele22_SW_TighterCaloIdIsol_L1R_v2=
210     \item \verb=HLT_Ele22_SW_TighterEleId_L1R_v3=
211     \item \verb=HLT_Ele22_SW_TighterCaloIdIsol_L1R_v2=
212     \end{itemize}
213     \item double-electron triggers
214     \begin{itemize}
215     \item \verb=HLT_DoubleEle15_SW_L1R_v1=
216     \item \verb=HLT_DoubleEle17_SW_L1R_v1=
217     \item \verb=HLT_Ele17_SW_TightCaloEleId_Ele8HE_L1R_v1=
218     \item \verb=HLT_Ele17_SW_TightCaloEleId_SC8HE_L1R_v1=
219     \item \verb=HLT_DoubleEle10_SW_L1R=
220     \item \verb=HLT_DoubleEle5_SW_L1R=
221     \end{itemize}
222     \item e-$\mu$ cross triggers
223     \begin{itemize}
224     \item \verb=HLT_Mu5_Ele5_v1=
225     \item \verb=HLT_Mu5_Ele9_v1=
226     \item \verb=HLT_Mu11_Ele8_v1=
227     \item \verb=HLT_Mu8_Ele8_v1=
228     \item \verb=HLT_Mu5_Ele13_v2=
229     \item \verb=HLT_Mu5_Ele17_v1=
230     \end{itemize}
231     \end{itemize}